SKDH 115

SEMIPONTTM 5

Half Controlled 3-phase Bridge Rectifier

SKDH 115

Target Data

Features

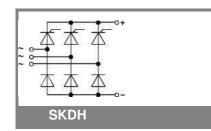
- Compact design
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R _{th})
- Low resistance in steady-state and high reliability
- High surge currents
- UL -recognized, file no. E 63 532

Typical Applications*

- For DC drives with a fixed direction of rotation
- Controlled field rectifier for DC motors
- Controlled battery charger

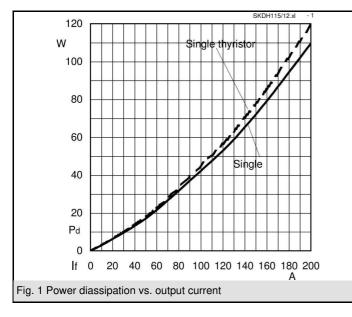
-		•		(1 _s 00 0)	
1200		1200		SKDH 115/12	
1600 1600		1600	SKDH 115/16		
Symbol	Con	ditions		Values	Unit
		T _s = 80 °C		110	A
	-	T _s = 80°C T _{vi} = 25 °C; 10 ms			
I _{TSM} , I _{FSM}		25 °C; 10 ms 125 °C; 10 ms		1050 950	A
i²t		25 °C; 8,3 10 ms		5500	A A²s
	.,				A ² s
., .,	• 1	125 °C; 8,3 10 ms		4500	
V _T , V _F		25 °C; I _T , I _F =120A		max. 1,8	V
V _{T(TO)} / VF(TO)	1 _{vj} = '	125 °C;		max. 1,1	V
r _T	$T_{vj} = T_{vj}$	125 °C		max. 6	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}			max. 20	mA
t _{gd}	T _{vj} = °	$^{\circ}$ C; I _G = A; di _G /dt = A/			μs
t _{gr}	$V_D = \cdot$	V _{DRM}			μs
(dv/dt) _{cr}	$T_{vi} = T$	125 °C		max. 1000	V/µs
(di/dt) _{cr}		T _{vj} = 125 °C; f = 5060 Hz		max. 50	A/µs
t _q		125 °C; typ.		150	μs
I _H	- 1	25 °C; typ. / max.		- / 200	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω			- / 400	mA
V _{GT}		25 °C; d.c.		min. 3	V
I _{GT}	T _{vj} = 25 °C; d.c.			min. 150	mA
V _{GD}	$T_{vj} = f$	125 °C; d.c.		max. 0,25	V
I _{GD}	$T_{vj} = T_{vj}$	125 °C; d.c.		max. 5	mA
					K/W
					K/W
R _{th(j-s)}	per th	iristor / diode		0,84	K/W
T _{vj}				- 40 + 125	°C
T _{stg}				- 40 + 125	°C
T _{solder}	termir	terminals		260	°C
V _{isol}	a. c. 5	a. c. 50 Hz; r.m.s.; 1 s / 1 min.		3600 (3000)	V
M _s	to hea	atsink		2,5	Nm
M _t					Nm
m	approx.			75	g
Case	SEMI	PONT 5		G 61	

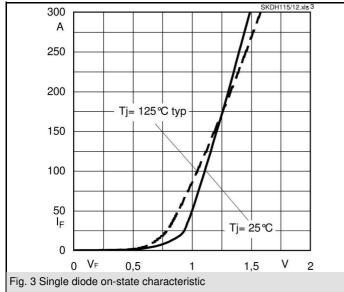
 $I_D = 110 \text{ A}$ (full conduction)

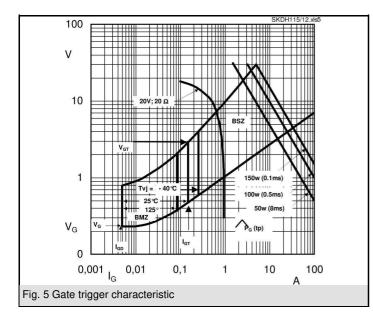

(T_s = 80 °C)

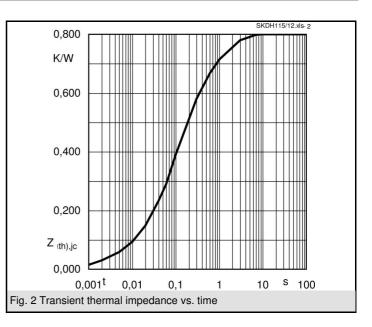
 V_{RRM}, V_{DRM}

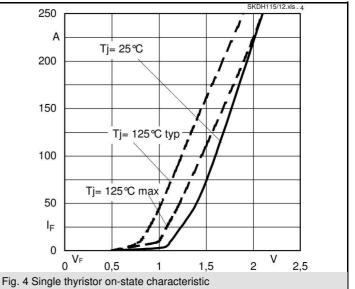
V

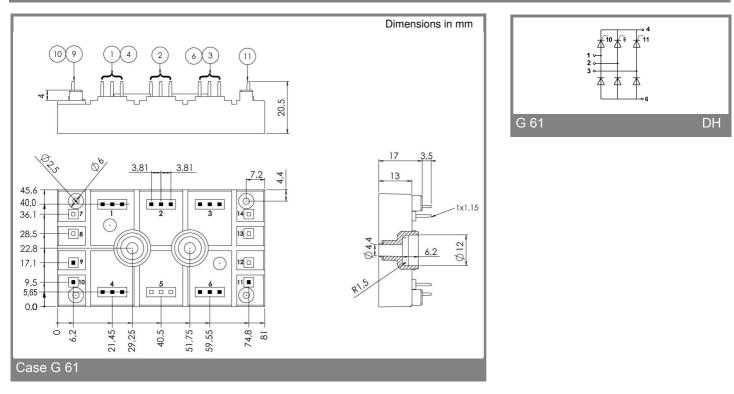

 V_{RSM}


V




© by SEMIKRON


SKDH 115



SKDH 115

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.