SKKT 72 H4, SKKH 72 H4

SKKT 106 /76 E			
SEMIPACK [®] 1	Symbol	Conditions	
OLIVIII AOIL I	'	=:= 400. T = 05 (400) °C.	

 V_{RSM}

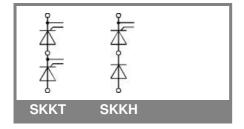
	V	V	I_{TAV} = 70 A (sin. 180; T_c = 85 °C)		
	2100	2000	SKKT 72/20E H4	SKKH 72/20E H4	
SEMIRRIN SEMIPACKO SEMIPAC	2300	2200	SKKT 72/22E H4	SKKH 72/22E H4	
	_				

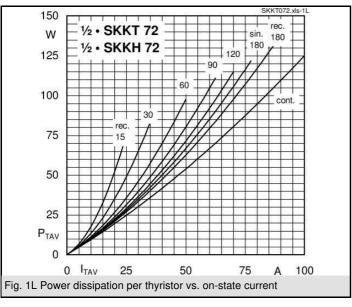
 V_{RRM}, V_{DRM}

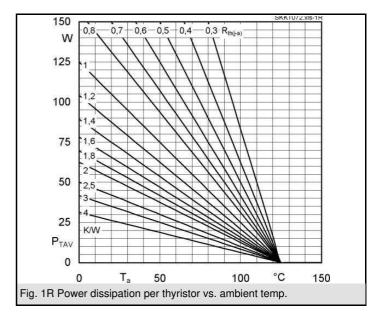
Thyristor / Diode Modules

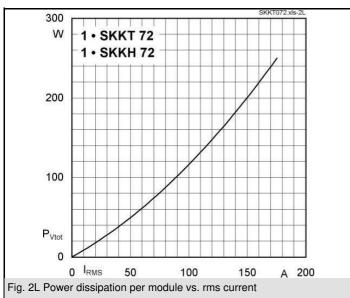
SKKT 72 H4 SKKH 72 H4

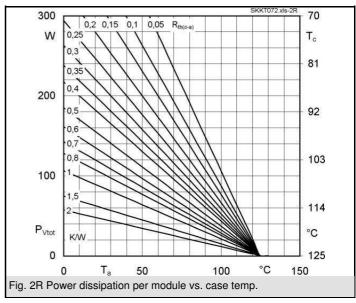
Features

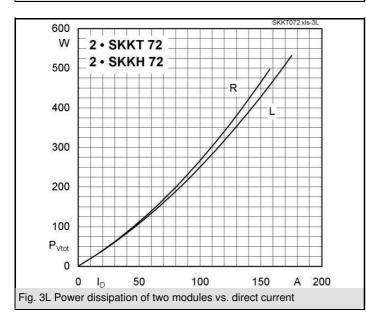

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- · Hard soldered joints for high reliability
- UL recognized, file no. E 63532

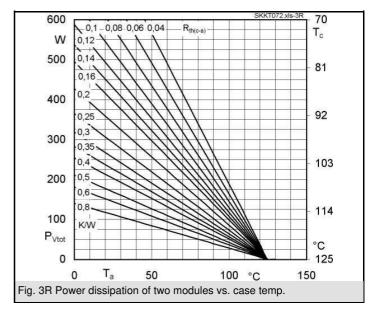

Typical Applications*

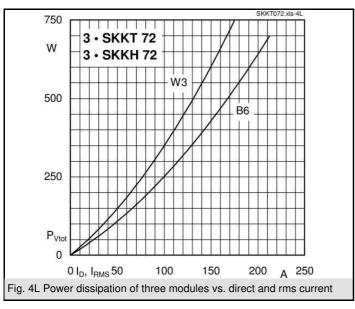

- DC motor control (e. g. for machine tools)
- AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- · Professional light dimming (studios, theaters)
- 1) See the assembly instructions

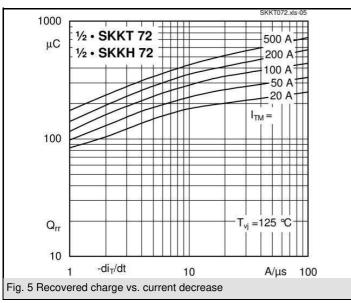

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	70 (50)	Α
I _D	P3/180; T _a = 45 °C; B2 / B6	62 / 75	Α
	P3/180F; T _a = 35 °C; B2 / B6	115 /145	Α
I _{RMS}	P3/180F; T _a = 35 °C; W1 / W3	155 / 3 * 115	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	1600	Α
	T _{vj} = 125 °C; 10 ms	1450	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	13000	A²s
	$T_{vj} = 125 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	10500	A²s
V _T	T _{vi} = 25 °C; I _T = 300 A	max. 1,9	V
$V_{T(TO)}$	T _{vj} = 125 °C	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 3,5	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$ $T_{vj} = 25 \text{ °C}; I_{G} = 1 \text{ A}; di_{G}/dt = 1 \text{ A}/\mu\text{s}$	max. 30	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	1	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}$	80	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 250	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 600	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 6	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,35 / 0,18	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,37 / 0,19	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,39 / 0,2	K/W
R _{th(c-s)}	per thyristor / per module	0,2 / 0,1	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	4800 / 4000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminals	3 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	95	g
Case	SKKT	A 46	
	SKKH	A 47	
	<u> </u>	•	•

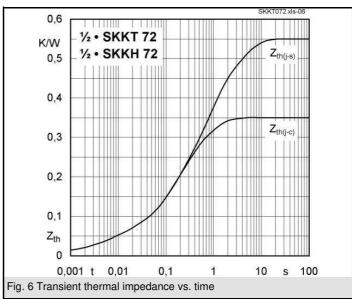

I_{TRMS} = 125 A (maximum value for continuous operation)

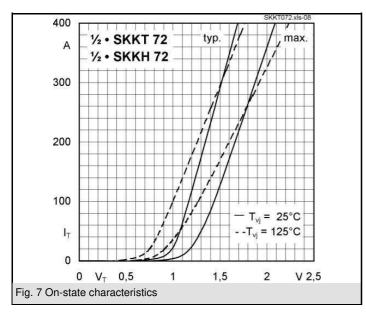


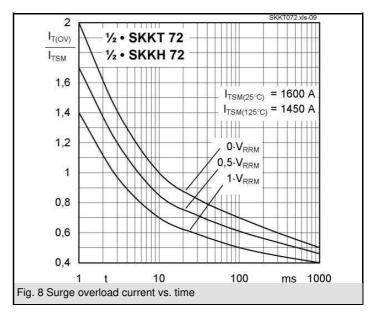


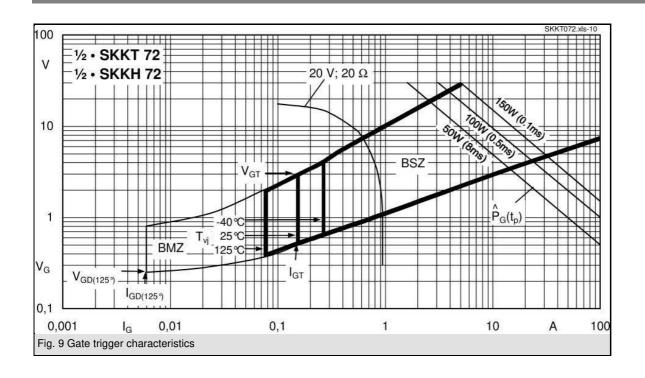


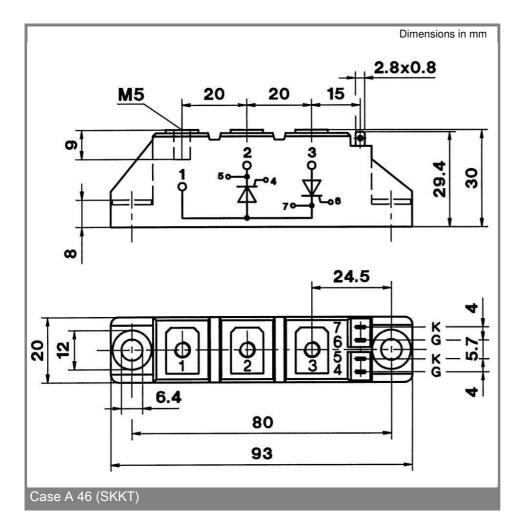


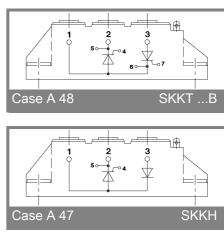



SKKT 72 H4, SKKH 72 H4









4 08-07-2009 GIL © by SEMIKRON

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.