

SEMISTART

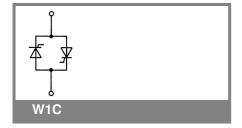
Antiparallel thyristors for softstart

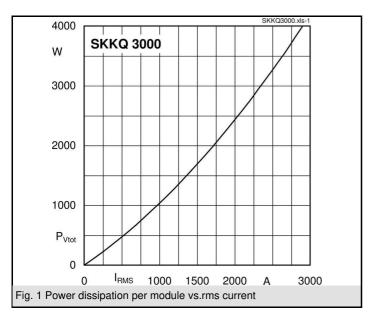
SKKQ 3000

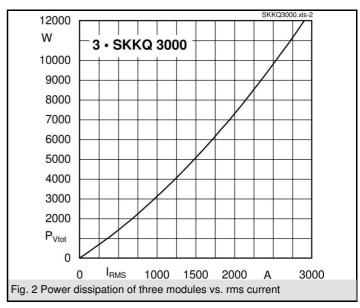
Features

- · Compact design
- · Thyristor with amplifying gate
- Pressure contact technology

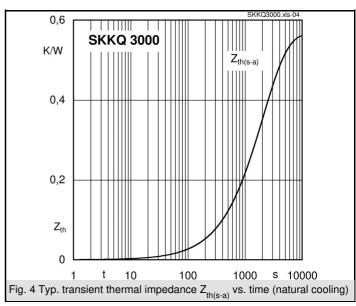
Typical Applications*

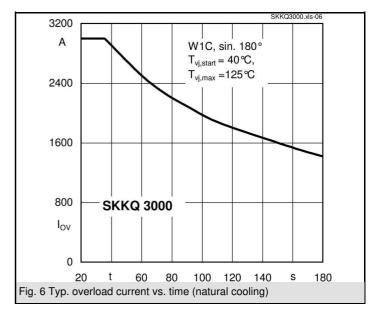

Soft Starters

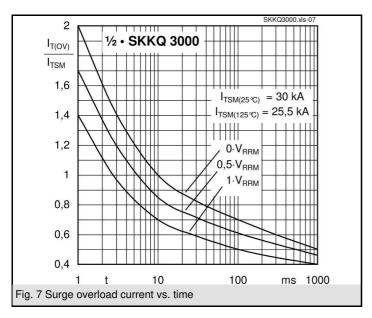

Remarks

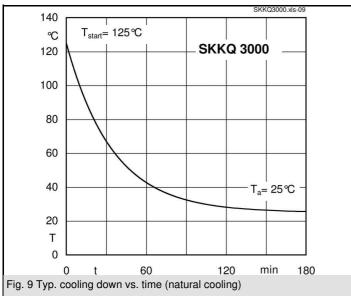

- Please note: This module has no soft mold protection around the chip. It is therefore susceptible to environmental influences (dust, humidity, etc.). The humidity test according to IEC60068-2-67 is not passed by this product.
- Recommendation: The devices should be installed in control cabinets of IP54 degree of protection.
- T_{vjmax} up to 150°C is allowable for overload conditions, max. time period for the overload condition is 20s.

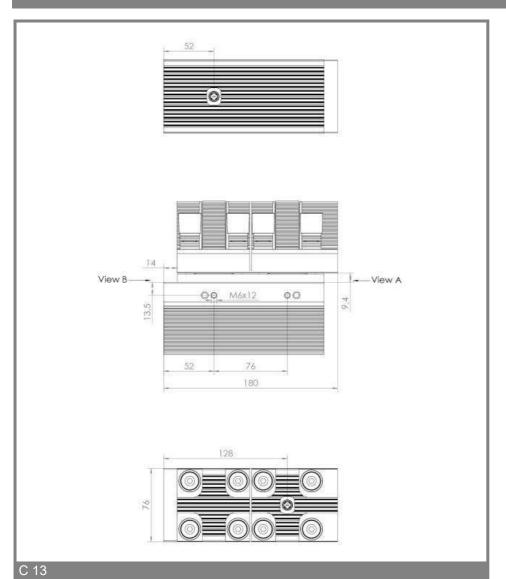

Absolute Maximum Ratings							
Symbol	Conditions	Values	Units				
I _{overload}	W1C; sin. 180°; 20 sec.; T _{vimax.} = 150 °C; T _{vistart} = 40°C	3080	Α				
I _{TSM}	$T_{vj} = 25^{\circ}C; 10 \text{ ms}$	30000	Α				
	$T_{vj} = 125^{\circ}C; 10 \text{ ms}$	25500	Α				
I²t	T _{vi} = 25°C; 8,3 10 ms	4500000	A²s				
	T _{vj} = 125°C; 8,3 10 ms	3250000	A²s				
SKKQ 3000/14							
V_{RSM}		1500	V				
V_{RRM}, V_{DRM}		1400	V				
SKKQ 3000/18							
V_{RSM}		1900	V				
V_{RRM}, V_{DRM}		1800	V				
T _{vj}		-40 +125 ¹⁾	°C				
T _{stg}		-40 + 125	°C				

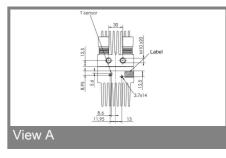

Characteristics						
Symbol	Conditions	min.	typ.	max.	Units	
V _T	T _{vi} = 25°C; I _T = 3600 A			1,65	V	
$V_{T(TO)}$	T _{vi} = 125°C			0,95	V	
r _T	$T_{vj} = 125^{\circ}C$			0,18	mΩ	
$I_{DD};I_{RD}$	$T_{vj} = 125$ °C; $V_{RD} = V_{RRM}$; per module			320	mA	
t _{gd}	$T_{vj} = 25^{\circ}C; I_{G} = 1A; di_{G}/dt = 1A/\mu s$		1		μs	
t _{gr}	$V_{D} = 0.67 * V_{DRM}$		2		μs	
(dv/dt) _{cr}	T _{vi} = 125°C		1000		V/µs	
(di/dt) _{cr}	T _{vi} = 125°C; f = 50 60 Hz		125		A/µs	
t _q	T _{vi} = 125°C		250		μs	
I _H	$T_{vj} = 25^{\circ}C$		250	500	mA	
IL	$T_{vj} = 25^{\circ}C; R_{G} = 33 \Omega$		500	2000	mA	
V_{GT}	T _{vi} = 25°C; d.c.	3			V	
I _{GT}	$T_{vi} = 25^{\circ}C; d.c.$	250			mA	
V_{GD}	$T_{vi} = 125^{\circ}C; d.c.$			0,25	V	
I_{GD}	$T_{vj} = 125^{\circ}C; d.c.$			10	mA	
R _{th(j-s)}	cont.; per thyristor			0,026	K/W	
M _t			5 ±15%		Nm	
m	approx.		3300		g	
Case			C 13			

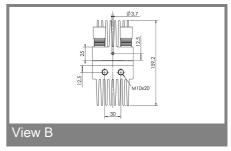












* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

4 26-02-2009 GIL © by SEMIKRON