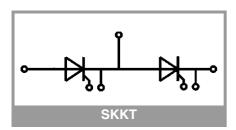


SEMIPACK[®] 3

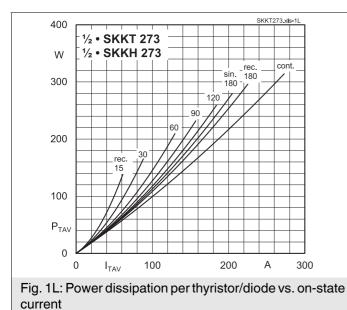
Thyristor Modules

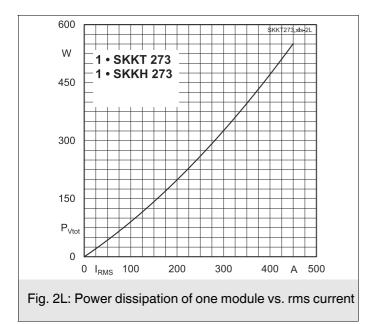

SKKT 273/16 E

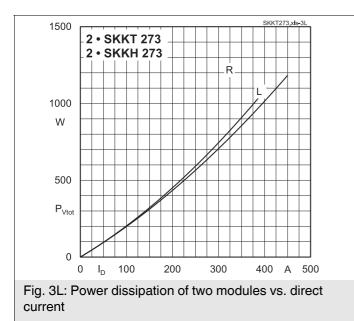
Features*

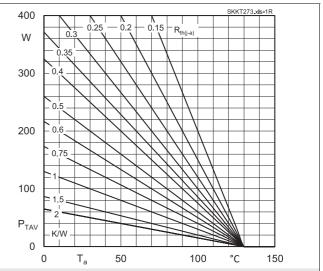
- Industrial standard package
- Electrically insulated base plate
- Heat transfer through aluminum oxide ceramic insulated metal base plate
- Chip soldered on direct copper bonded Al₂O₃ ceramic
- UL recognition, file no. E63532

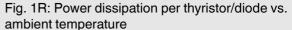
Typical Applications

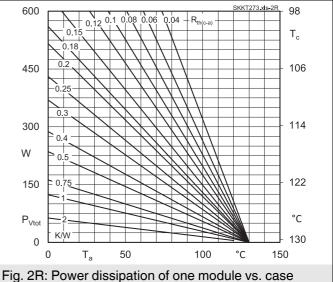

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)




Absolute	e Maximum Ratin	gs				
Symbol	Conditions	Values			Unit	
Chip						
I _{T(AV)}	sinus 180°	T _c = 85 °C	274			Α
		T _c = 100 °C		204		Α
I _{TSM}	10 ms	T _j = 25 °C		9000		
		T _j = 130 °C		8000		
i ² t	10 ms	T _j = 25 °C		405000		
		T _j = 130 °C		320000		
V _{RSM}			1700		V	
V _{RRM}			1600		V	
V _{DRM}			1600		V	
(di/dt) _{cr}	T _j = 130 °C		130			A/μs
(dv/dt) _{cr}	T _j = 130 °C			1000		V/µs
Tj				-40 130		
Module						
T _{stg}			-40 125		°C	
V _{isol}		1 min		3000		V
	a.c.; 50 Hz; r.m.s.	1 s		3600	V	
Characte						
Characte	1		min	tun	mov	linit
Symbol	eristics Conditions	-	min.	typ.	max.	Unit
Symbol Chip	Conditions	50.0	min.	typ.		
Symbol Chip V _T	Conditions $T_j = 25 \text{ °C}, I_T = 75$	50 A	min.	typ.	1.6	V
Symbol Chip V _T V _{T(TO)}	Conditions $T_j = 25 \ ^{\circ}C, I_T = 75$ $T_j = 130 \ ^{\circ}C$	50 A	min.	typ.	1.6 0.90	V V
Symbol Chip V _T V _{T(TO)} r _T	Conditions $T_j = 25 \ ^\circ C, I_T = 75$ $T_j = 130 \ ^\circ C$ $T_j = 130 \ ^\circ C$		min.	typ.	1.6 0.90 0.92	V V mΩ
Symbol Chip V _T V _{T(TO)} r _T I _{DD} ;I _{RD}	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline T_{j} = 25 \ ^{\circ}C, \ I_{T} = 75 \\ \hline T_{j} = 130 \ ^{\circ}C \\ \hline T_{j} = 130 \ ^{\circ}C \\ \hline T_{j} = 130 \ ^{\circ}C, \ V_{DD} = 100 \\ \hline T_{j} = 100 \ ^{\circ}C, \ T_{j} = 100 \ ^{\circ}C, \ T_{j} = 100 \\ \hline T_{j} = 100 \ ^{\circ}C, \ T_{j} =$	= V _{DRM} ; V _{RD} = V _{RRM}	min.		1.6 0.90	V V mΩ mA
Symbol Chip V _T V _{T(TO)} r _T I _{DD} ;I _{RD} t _{gd}	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline $T_j = 25 $ ^{\circ}C, $I_T = 75$ \\ \hline $T_j = 130 $ ^{\circ}C$ \\ \hline $T_j = 130 $ ^{\circ}C$ \\ \hline $T_j = 130 $ ^{\circ}C, $V_{DD} = $T_j = 25 $ ^{\circ}C, $I_G = 1$ \\ \hline $T_j = 25 $ ^{\circ}C, $I_G = 1$ \\ \hline $T_j = 100 $ $ ^{\circ}C, $T_{DD} = $T_{DD} $ $ ^{\circ}C, $ $	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs	min.	1	1.6 0.90 0.92	V V mΩ mA μs
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline $T_j = 25 \ ^\circ C, \ I_T = 75 \\ \hline $T_j = 130 \ ^\circ C $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs	min.	1 2	1.6 0.90 0.92	V V mΩ mA μs μs
Symbol Chip VT VT(TO) rT IDD;IRD tgq tgr	$\label{eq:transform} \begin{array}{ c c c c } \hline Conditions \\ \hline T_{j} = 25 \ ^{\circ}C, \ I_{T} = 75 \\ \hline T_{j} = 130 \ ^{\circ}C \\ \hline T_{j} = 130 \ ^{\circ}C \\ \hline T_{j} = 130 \ ^{\circ}C, \ V_{DD} = 1 \\ \hline V_{D} = 0.67 \ ^{*}V_{DRM} \\ \hline T_{j} = 130 \ ^{\circ}C \end{array}$	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs	min.	1 2 150	1.6 0.90 0.92 100	V V mΩ mA μs μs μs
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr tq IH	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline $T_j = 25 \ ^\circ C, \ $I_T = 75$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 130 \ ^\circ C, \ $V_{DD} = 1$ \\ \hline $T_j = 25 \ ^\circ C, \ $I_G = 1$ \\ \hline $V_D = 0.67 \ ^* \ V_{DRM} \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 25 \ ^\circ C$ \\ \hline \end{tabular}$	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs	min.	1 2 150 150	1.6 0.90 0.92 100 500	V V mΩ mA μs μs mA
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr tq IH L	$\label{eq:conditions} \left \begin{array}{c} T_{j} = 25 \ ^{\circ}\text{C}, \ I_{T} = 75 \\ T_{j} = 130 \ ^{\circ}\text{C} \\ T_{j} = 130 \ ^{\circ}\text{C} \\ T_{j} = 130 \ ^{\circ}\text{C}, \ V_{DD} = 125 \ ^{\circ}\text{C}, \ I_{G} = 125 \ ^{\circ}\text{C} \\ V_{D} = 0.67 \ ^{*}\text{V}_{DRM} \\ T_{j} = 130 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C}, \ R_{G} = 325 \ ^{\circ}\text{C} \\ T_{j} = 25 \ ^{\circ}\text{C} \ T_{j} = 25 $	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs		1 2 150	1.6 0.90 0.92 100	V V mΩ mA μs μs mA mA
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr tq IH L VGT	$\label{eq:conditions} \begin{bmatrix} T_j = 25 \ ^\circ C, \ I_T = 75 \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C, \ V_{DD} = 125 \ ^\circ C, \ I_G = 125 \\ V_D = 0.67 \ ^* \ V_{DRM} \\ T_j = 130 \ ^\circ C \\ T_j = 25 \ ^\circ C, \ R_G = 35 \\ T_j = 25 \ ^\circ C, \ R_G = 35 \\ T_j = 25 \ ^\circ C, \ d.c. \end{bmatrix}$	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs	2	1 2 150 150	1.6 0.90 0.92 100 500	V V mΩ mA μs μs mA mA V
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr tqr IL VGT IGT	$\label{eq:conditions} \begin{bmatrix} T_j = 25 \ ^\circ C, \ I_T = 75 \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C, \ V_{DD} = 1 \\ T_j = 25 \ ^\circ C, \ I_G = 1 \\ V_D = 0.67 \ ^\ast \ V_{DRM} \\ T_j = 130 \ ^\circ C \\ T_j = 25 \ ^\circ C, \ T_j = 25 \ ^\circ C, \ R_G = 3 \\ T_j = 25 \ ^\circ C, \ R_G = 3 \\ T_j = 25 \ ^\circ C, \ d.c. \\ T_j = 25 \ ^\circ C, \ d.c. \\ \end{bmatrix}$	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs		1 2 150 150	1.6 0.90 0.92 100 500 2000	V V mΩ mA μs μs mA mA V V
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr IL VGT IGT IGT	$\label{eq:conditions} \hline $T_j = 25 \ ^\circ C, \ I_T = 75$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 130 \ ^\circ C, \ V_{DD} = 1$ \\ \hline $T_j = 25 \ ^\circ C, \ I_G = 1$ \\ \hline $V_D = 0.67 \ ^* \ V_{DRM}$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 25 \ ^\circ C$ \\ \hline $T_j = 25 \ ^\circ C, \ R_G = 3$ \\ \hline $T_j = 25 \ ^\circ C, \ d.c.$ \\ \hline $T_j = 25 \ ^\circ C, \ d.c.$ \\ \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline \hline $T_j = 100 \ ^\circ C, \ d.c.$ \\ \hline \hline \hline \hline $T_j = 100 \ ^\circ C, \ d.c.$ \\ \hline $	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs	2	1 2 150 150	1.6 0.90 0.92 100 500 2000	V V mΩ μs μs μs mA mA V mA V
Symbol Chip V _T V _{T(TO)} r _T l _{DD} ;l _{RD} t _{gd} t _{gd} t _{gr} t _q l _H l _L V _{GT} l _{GT} l _{GD}	$\label{eq:conditions} \begin{bmatrix} T_j = 25 \ ^\circ C, \ I_T = 75 \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C, \ V_{DD} = 1 \\ T_j = 25 \ ^\circ C, \ I_G = 1 \\ V_D = 0.67 \ ^\ast \ V_{DRM} \\ T_j = 130 \ ^\circ C \\ T_j = 25 \ ^\circ C, \ T_j = 25 \ ^\circ C, \ R_G = 3 \\ T_j = 25 \ ^\circ C, \ R_G = 3 \\ T_j = 25 \ ^\circ C, \ d.c. \\ T_j = 25 \ ^\circ C, \ d.c. \\ \end{bmatrix}$	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs 33 Ω	2	1 2 150 150	1.6 0.90 0.92 100 500 2000 0.25 10	V V mΩ μs μs mA mA V mA V mA
Symbol Chip VT VT(TO) rT IDD;IRD tgd tgr IL VGT IGT IGT	$\label{eq:conditions} \hline $T_j = 25 \ ^\circ C, \ I_T = 75$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 130 \ ^\circ C, \ V_{DD} = 1$ \\ \hline $T_j = 25 \ ^\circ C, \ I_G = 1$ \\ \hline $V_D = 0.67 \ ^* \ V_{DRM}$ \\ \hline $T_j = 130 \ ^\circ C$ \\ \hline $T_j = 25 \ ^\circ C$ \\ \hline $T_j = 25 \ ^\circ C, \ R_G = 3$ \\ \hline $T_j = 25 \ ^\circ C, \ d.c.$ \\ \hline $T_j = 25 \ ^\circ C, \ d.c.$ \\ \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline \hline $T_j = 130 \ ^\circ C, \ d.c.$ \\ \hline \hline \hline $T_j = 100 \ ^\circ C, \ d.c.$ \\ \hline \hline \hline \hline $T_j = 100 \ ^\circ C, \ d.c.$ \\ \hline $	= V _{DRM} ; V _{RD} = V _{RRM} A, di _G /dt = 1 A/μs 33 Ω	2	1 2 150 150	1.6 0.90 0.92 100 500 2000 0.25 10 0.104	V V mΩ mA μs μs mA mA V mA V mA
Symbol Chip V _T V _{T(TO)} r 1 _{DD} ;I _{RD} t _{gd} t _{gr} t _q t _q I _H I _L V _{GT} I _{GD} I _{GD} R _{th(j-c)}	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline $T_j = 25 \ ^\circ C, \ I_T = 75 \\ \hline $T_j = 130 \ ^\circ C $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$= V_{DRM}; V_{RD} = V_{RRM}$ A, di _G /dt = 1 A/µs 33 Ω per chip per module	2	1 2 150 150	1.6 0.90 0.92 100 500 2000 0.25 10 0.104 0.052	V V mΩ mA μs μs mA mA V mA V mA K/W
Symbol Chip V _T V _{T(TO)} r _T l _{DD} ;l _{RD} t _{gd} t _{gd} t _{gr} t _q l _H l _L V _{GT} l _{GT} l _{GD}	$\label{eq:conditions} \begin{bmatrix} T_j = 25 \ ^\circ C, \ I_T = 75 \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C \\ T_j = 130 \ ^\circ C, \ V_{DD} = 10 \\ T_j = 25 \ ^\circ C, \ I_G = 10 \\ V_D = 0.67 \ ^* \ V_{DRM} \\ T_j = 130 \ ^\circ C \\ T_j = 25 \ ^\circ C \\ T_j = 25 \ ^\circ C, \ R_G = 30 \\ T_j = 25 \ ^\circ C, \ d.c. \\ T_j = 25 \ ^\circ C, \ d.c. \\ T_j = 130 \ ^\circ C, \ d.c. \\ T_j = 130 \ ^\circ C, \ d.c. \\ T_j = 130 \ ^\circ C, \ d.c. \\ \end{bmatrix}$	$= V_{DRM}; V_{RD} = V_{RRM}$ A, di _G /dt = 1 A/µs 33 Ω per chip per module per chip	2	1 2 150 150	1.6 0.90 0.92 100 500 2000 0.25 10 0.104 0.052 0.108	V W mA μs μs mA V mA K/W K/W
Symbol Chip V _T V _T (TO) r I _{DD} ;I _{RD} t _{gd} t _{gr} t _q t _q I _H I _L V _{GT} I _{GD} I _{GD} R _{th(j-c)}	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline $T_j = 25 \ ^\circ C, \ I_T = 75 \\ \hline $T_j = 130 \ ^\circ C $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$= V_{DRM}; V_{RD} = V_{RRM}$ A, di _G /dt = 1 A/µs 33 Ω per chip per module	2	1 2 150 150	1.6 0.90 0.92 100 500 2000 0.25 10 0.104 0.052	V W mΩ μs μs mA V mA K/W


Module


Module					
R _{th(c-s)}	chip		0.08		K/W
	module		0.04		K/W
Ms	to heatsink M5	4.25		5.75	Nm
Mt	to terminals M8	7.65		10.35	Nm
а				5 * 9.81	m/s²
w			410		g



temperature

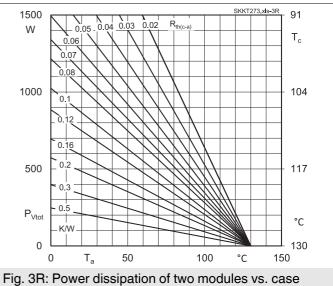
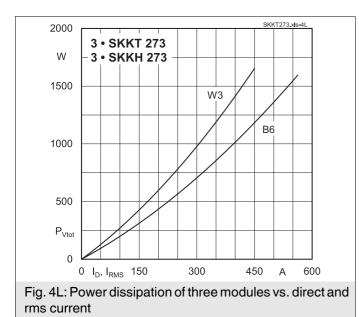
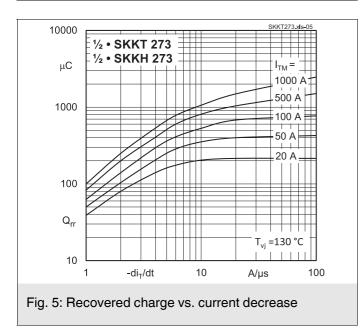
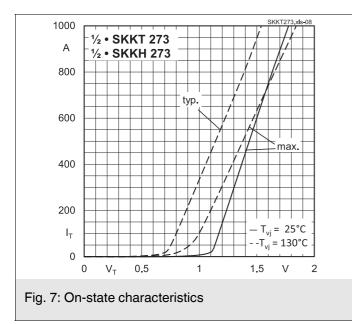





Fig. 3R: Power dissipation of two modules vs. case temperature

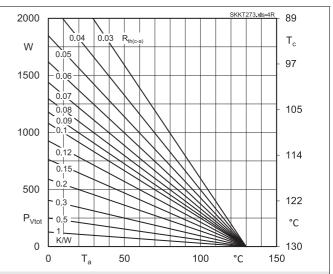


Fig. 4R: Power dissipation of three modules vs. case temperature

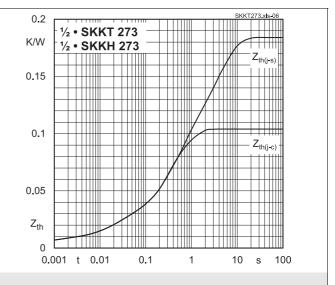
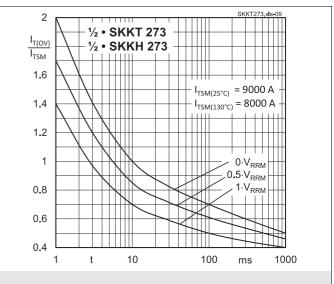
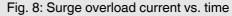
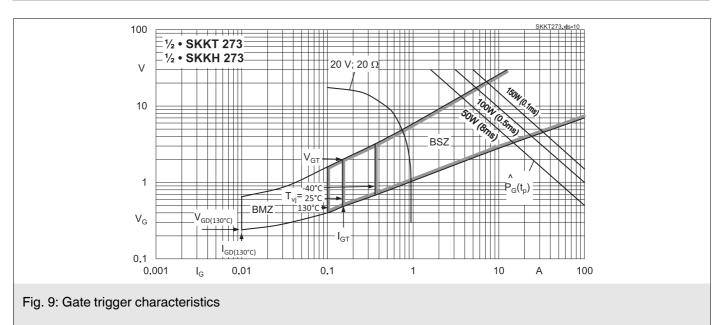
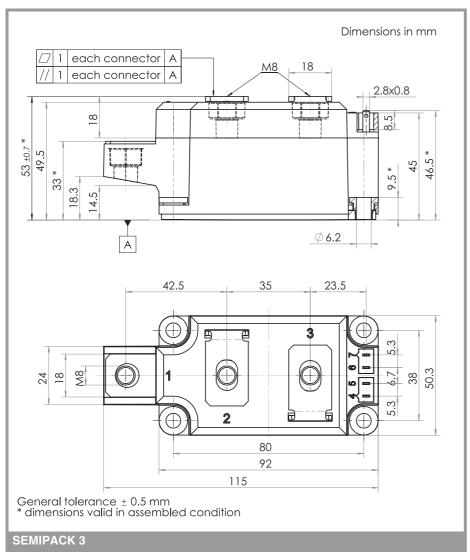






Fig. 6: Transient thermal impedance vs. time

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in

typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.