SK 100 KQ

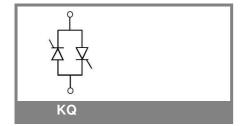
SEMITOP® 2

Antiparallel Thyristor Module

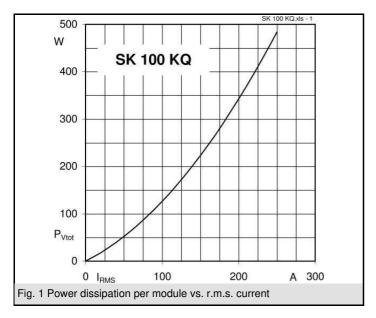
SK 100 KQ

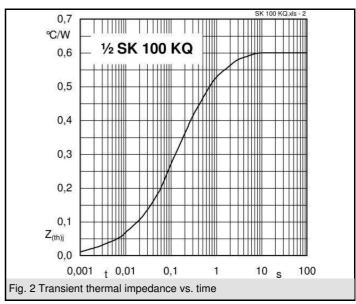
Preliminary Data

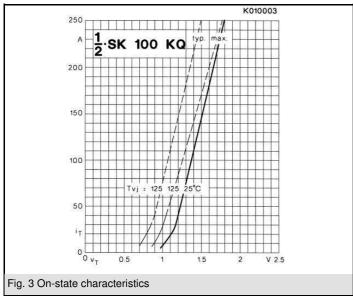
Features

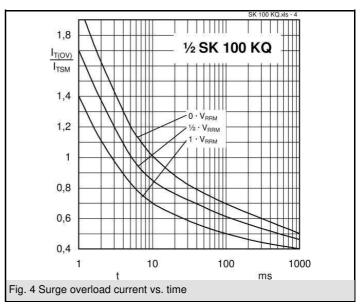

- Compact Design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- · Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

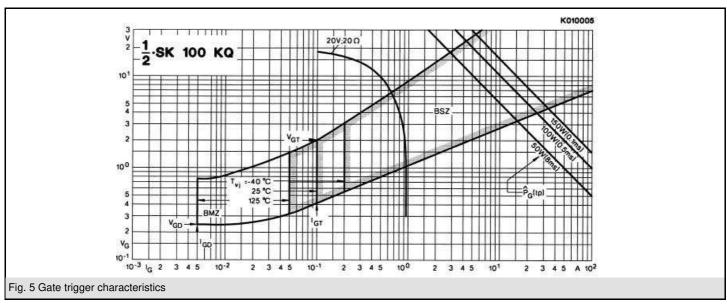
Typical Applications

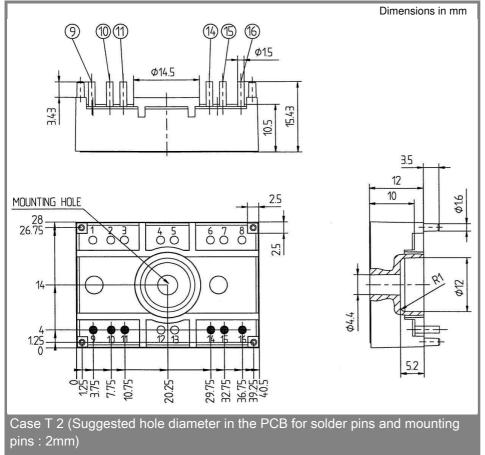

- Soft starters
- Light control (studios, theaters...)
- Temperature control

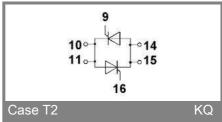

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{RMS} = 101 A (full conduction) (T _s = 85 °C)
900	800	SK 100 KQ 08
1300	1200	SK 100 KQ 12
1700	1600	SK 100 KQ 16


Symbol	Conditions	Values	Units
I _{RMS}	W1C ; sin. 180° ; T _s = 100°C	71	Α
	W1C ; sin. 180° ; T _s = 85°C	101	Α
I _{TSM}	T _{vj} = 25 °C ; 10 ms	1500	Α
	T_{v_i} = 125 °C ; 10 ms	1350	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C} ; 8,310 \text{ ms}$	11250	A²s
	T _{vj} = 125 °C ; 8,310 ms	9100	A²s
V_T	$T_{vj} = 25 ^{\circ}\text{C}, I_{T} = 200 \text{A}$	max. 1,8	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}C$	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 4,5	mΩ
$I_{DD};I_{RD}$	$T_{vj} = 25 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 1	mA
	T_{vj} = 125 °C, V_{RD} = V_{RRM}	max. 20	mA
t_{gd}	T_{vj} = 25 °C, I_{G} = 1 A; di_{G}/dt = 1 A/ μ s	1	μs
t_{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vj} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f= 5060 Hz	100	A/µs
t _q	$T_{v_i} = 125 ^{\circ}\text{C}$; typ.	80	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	100 / 200	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	200 / 500	mA
V_{GT}	$T_{v_i} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 5	mA
$R_{th(j-s)}$	cont. per thyristor	0,6	K/W
	sin 180° per thyristor	0,63	K/W
$R_{th(j-s)}$	cont. per W1C	0,3	K/W
	sin 180° per W1C	0,315	K/W
T_{vj}		-40 +125	°C
T _{stg}		-40 +125	°C
T _{solder}	terminals, 10s	260	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M_s	Mounting torque to heatsink	2,0	Nm
M _t			Nm
а			m/s²
m		19	g
Case	SEMITOP® 2	T 2	




SK 100 KQ





This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.