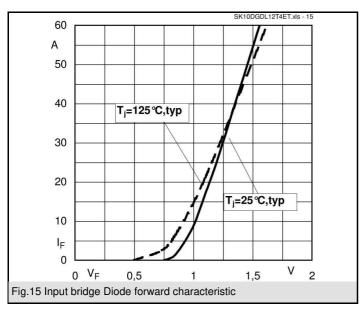
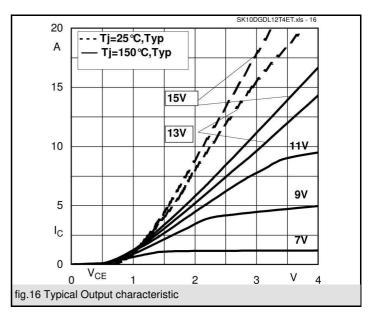
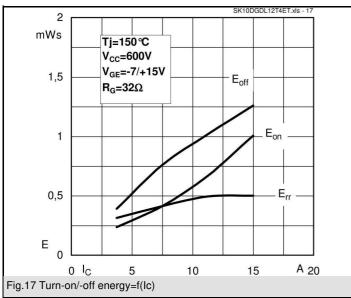

SEMITOP®3

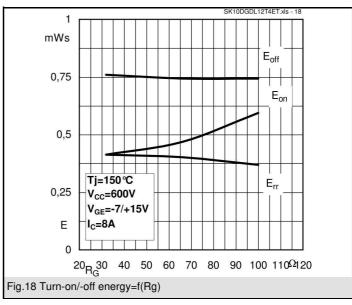
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 10 DGDL 12T4 ET

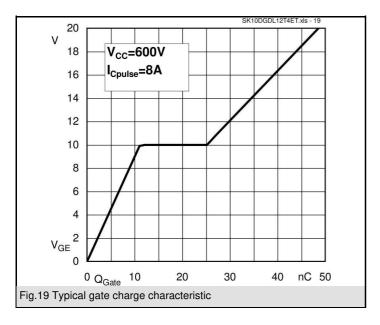
Target Data

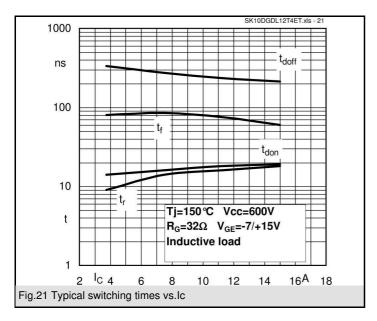

Features

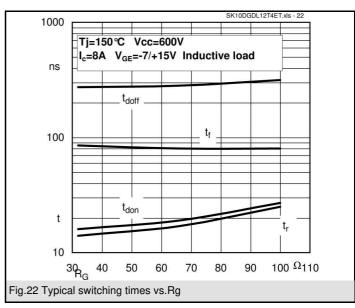

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor
- 1) $V_{CE,sat}$, V_F = chip level value

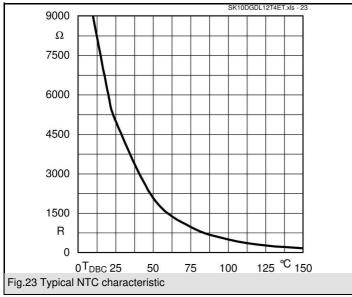


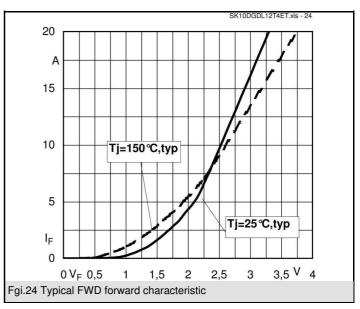

Absolute Maximum Ratings Ts = 25 °C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	17 (15)	Α				
I _{CRM}	$I_{CRM} = 3 \times I_{Cnom}, t_p = 1 \text{ ms}$	24	Α				
V_{GES}	·	± 20	V				
T _j		-40 + 175	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C	15 (12)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	24	Α				
T _j		-40 + 150	°C				
Rectifier							
V_{RRM}		1600	V				
I _F	T _s = 70 °C	28	Α				
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, $\sin 180 ^{\circ}$, $T_i = 25 ^{\circ}$ C	220	Α				
I ² t	$t_p = 10 \text{ ms}$, $\sin 180 ^{\circ}$, $T_i = 25 ^{\circ}$ C	240	A²s				
T _j		-40 +1 75	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min. / 1 s	2500 / 3000	V				

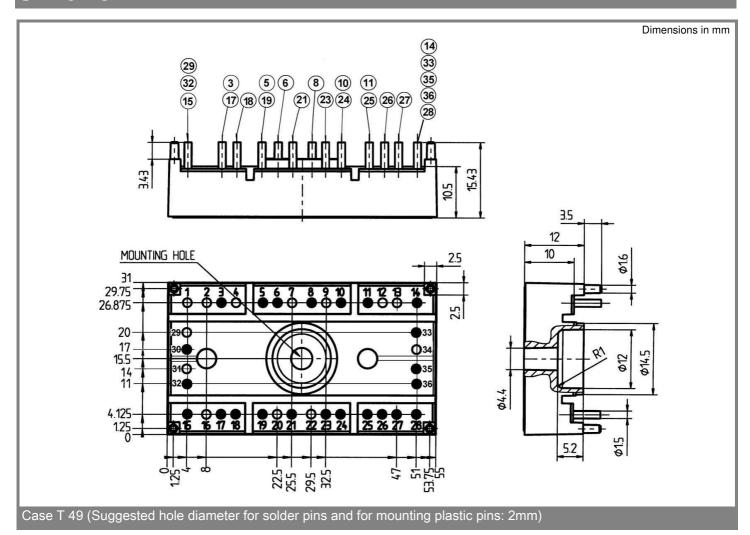

Characteristics		Ts = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat}	I _C = 8 A, T _i = 25 (150) °C		1,85 (2,25)	2,05 (2,45)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.3 \text{ mA}$	5	5,8	6,5	V			
V _{CE(TO)}	$T_j = 25 ^{\circ}\text{C} (150) ^{\circ}\text{C}$		1,1 (1)	1,3 (1,2)	V			
r _T	$T_{j} = 25 ^{\circ}\text{C} (150) ^{\circ}\text{C}$		93,8 (156)		mΩ			
C _{ies}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,49		nF			
Coes	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,05		nF			
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,03		nF			
$R_{th(j-s)}$	per IGBT		2,2		K/W			
$t_{d(on)}$	under following conditions		16		ns			
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		14		ns			
t _{d(off)}	I _C = 8 A, T _j = 150 °C		273		ns			
t _f	$R_{Gon} = R_{Goff} = 32 \Omega$		85		ns			
E _{on}	inductive load		0,41		mJ			
E _{off}			0,75		mJ			
Diode - Inverter, Chopper								
$V_F = V_{EC}$	I _F = 15 A, T _i = 25(150) °C		2,38 (2,44)	2,71 (2,77)	V			
V _(TO)	T _i = 25 °C (150) °C		1,3 (0,9)	1,5 (1,1)	V			
r _T	T _j = 25 °C (150) °C		135 (192)	151,3 (208,8)	mΩ			
$R_{th(j-s)}$	per diode		2,7		K/W			
I _{RRM}	under following conditions		15		Α			
Q_{rr}	$I_F = 8 \text{ A}, V_R = 600 \text{ V}$		0,2		μC			
E _{rr}	V _{GE} = 0 V, T _j = 150 °C		0,41		mJ			
	di _{F/dt} = 1375 A/μs							
Diode - Rectifier								
V _F	I _F = 15 A, T _i = 25() °C		1,1		V			
$V_{(TO)}$	T _i = 150 °C		0,9		V			
r _T	T _i = 150 °C		20		mΩ			
$R_{th(j-s)}$	per diode		2		K/W			
Temperatur sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical data								
w			30		g			
M_s	Mounting torque	2,25		2,5	Nm			

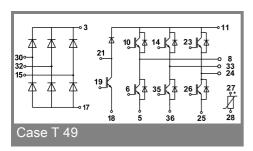












3 27-05-2009 DIL © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

4 27-05-2009 DIL © by SEMIKRON