

SEMITOP[®] 3

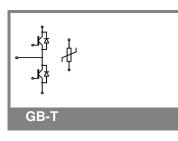
IGBT Module

SK150GB066T

Target Data

Features

- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor


Typical Applications*

Remarks

• V_{isol} = 3000V AC,50Hz,1s

Absolute Maximum Ratings T _s = 2			= 25 °C, unless otherwise	25 °C, unless otherwise specified		
Symbol Conditions			Values	Unite		
IGBT						
V _{CES}	T _j = 25 °C		600	V		
I _C	T _j = 175 °C	T _s = 25 °C	124	A		
		T _s = 70 °C	96	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		300	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 150 °C	6	μs		
Inverse	Diode					
I _F	T _j = 175 °C	T _s = 25 °C	135	A		
		T _s = 70 °C	95	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		300	А		
Module						
I _{t(RMS)}				А		
T _{vj}			-40 +175	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Unite
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 2,4 mA		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0076	mA
		T _j = 125 °C T _j = 25 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _i = 25 °C			1200	nA
		T _j = 125 °C				nA
V _{CE0}		T _i = 25 °C		0,8	1,1	V
		T _i = 150 °C		0,7	1	V
r _{CE}	V _{GE} = 15 V	T _i = 25°C		4	5	mΩ
		T _i = 150°C		6,35	7	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V
C _{ies}		· ·		9,4		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,6		nF
C _{res}				0,29		nF
Q _G	V _{GE} = -7V+15V			1400		nC
t _{d(on)}				95		ns
t _r	R _{Gon} = 8 Ω	V _{CC} = 300V		50		ns
Eon	di/dt = 2250 A/µs	I _C = 150A		6,25		mJ
t _{d(off)}	$R_{Goff} = 8 \Omega$	T _j = 150 °C		541		ns
t _f	di/dt = 2250 A/µs	V _{GE} = -7/+15 V		70		ns
E _{off}				5,7		mJ
R _{th(j-s)}	per IGBT			0,65		K/W

SEMITOP[®] 3

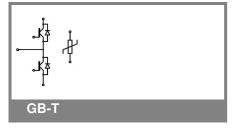
IGBT Module

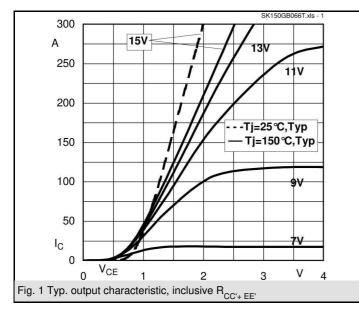
Target Data

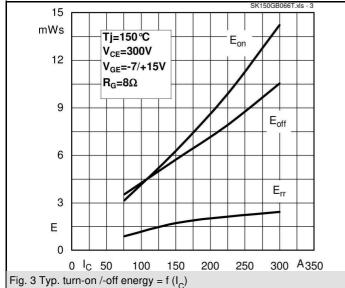
Features

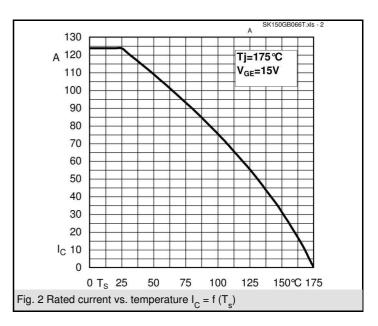
- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

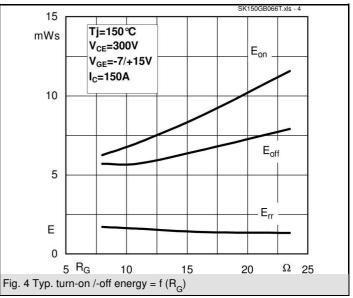
Typical Applications*


Remarks


V_{isol} = 3000V AC,50Hz,1s


Svmbol	Conditions		min.	typ.	max.	Unit
Inverse D				.,6.		
	I _{Fnom} = 150 A; V _{GE} = 0 V	T _i = 25 °C _{chipley}		1,35		V
		T _j = 150 °C _{chiplev.}		1,31		V
V _{F0}		T _j = 25 °C				V
		T _j = 150 °C		0,85		V
r _F		T _j = 25 °C				mΩ
		T _j = 150 °C		3,9		mΩ
I _{RRM}	I _F = 150 A	T _j = 150 °C		100		Α
Q _{rr}	di/dt = 2250 A/µs	-		11		μC
E _{rr}	V _{CC} = 300V			1,7		mJ
R _{th(j-s)D}	per diode			0,73		K/W
M _s	to heat sink		2,5		2,75	Nm
w				60		g
Temperat	ture sensor					
R ₁₀₀	T _s = 100°C (R ₂₅ =5kΩ)			493±5%		Ω


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

