SK 20 DGDL 066 ET

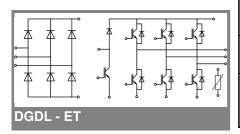
SEMITOP®3

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 20 DGDL 066 ET

Target Data

Features

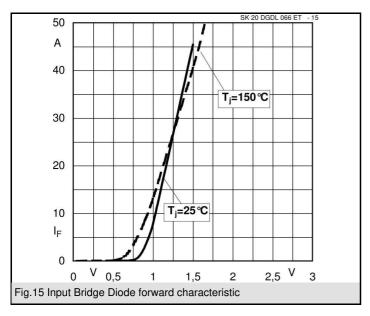
- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

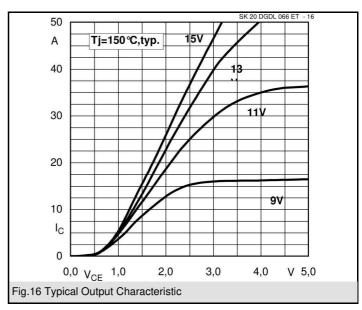
- Inverter up to 6,3 kVA
- Typ. motor power 4 kW

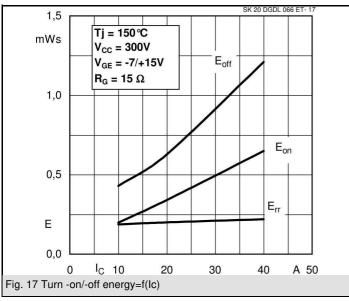
Remarks

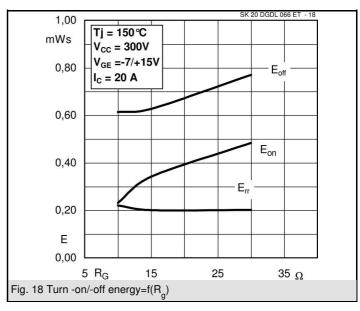
- V_{CE,sat} , V_F = chip level value
 SC data:

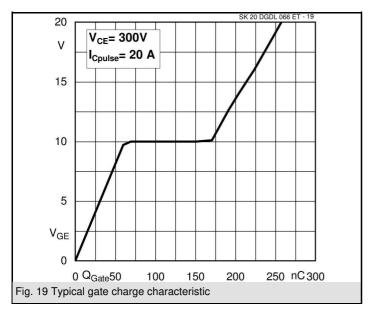

$$t_p \le 6 \text{ s;V}_{GE} \le 15\text{V;T}_j = 150^{\circ}\text{C;V}_{cc} = 360$$

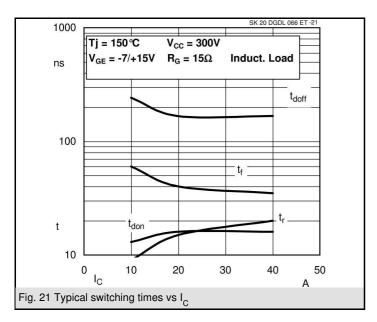
V_{isol} = 3000V AC,50Hz,1s

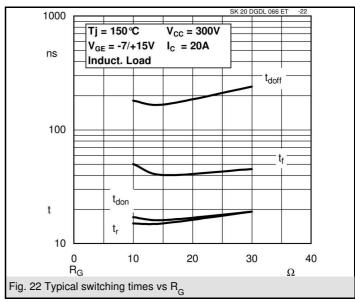


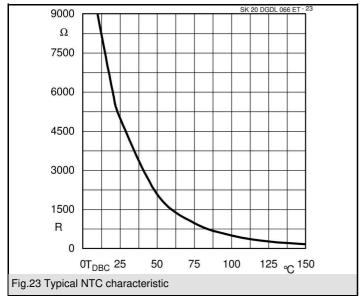

Absolute Maximum Ratings $T_s = 25^{\circ}C$, unless otherwise specified							
	Conditions	Values					
IGBT - Inverter, chopper							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	30 (24)	Α				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	27 (21)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	40	Α				
V_{GES}	ŕ	± 20	V				
T _j		-40 + 175	°C				
Diode - Inverter, chopper							
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	27 (20)	Α				
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	31 (24)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	40	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	26	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	220	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	240	A²s				
T _i		-40 + 175	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

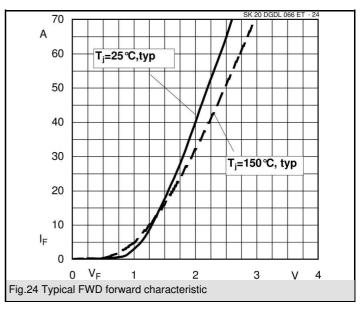

Character	ristics	T _s = 25°C	s = 25°C , unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, chopper									
V _{CE(sat)}	I _{Cnom} = 20 A, T _i = 25 (150) °C		1,45 (1,65)	1,85 (2,05)	V				
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,29 \text{ mA}$	5	5,8	6,5	V				
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	, ,	V				
r_{CE}	$T_{j} = 25 (150) ^{\circ}C$			37,5 (52,5)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,1		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,071		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,32		nF				
R _{th(j-s)}	per IGBT		1,95		K/W				
t _{d(on)}	under following conditions		16		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -7/+15$		15		ns				
$t_{d(off)}$	I _{Cnom} = 20 A, T _j = 150 °C		166		ns				
t _f	$R_{Gon} = R_{Goff} = 15 \Omega$		40		ns				
$E_{on} \left(E_{off} \right)$	inductive load		0,3 (0,6)		mJ				
Diode - Inverter, chopper									
$\mathcal{V}_{F} = V_{EC}$	I _F = 20 A, T _i = 25 (150) °C		1,4 (1,4)	1,7 (1,7)	V				
$V_{(TO)}$	T _i = 25 (150) °C		1 (0,9)	1,1 (1)	V				
r _T	T _j = 150 () °C		20 (25)	30 (35)	mΩ				
R _{th(j-s)}	per diode		2,46		K/W				
I _{RRM}	under following conditions		32		Α				
Q_{rr}	$I_{Fnom} = 20 \text{ A}, V_{R} = 300 \text{ V}$		2		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$		0,2		mJ				
	di _F /dt = -3300 A/µs								
Diode rectifier									
V_{F}	I _{Fnom} = 15 A, T _i = 25 °C		1,1		V				
$V_{(TO)}$	T _j = 150 °C		0,8		V				
r _T	$T_{j} = 150 ^{\circ}\text{C}$		20		mΩ				
$R_{th(j-s)}$	per diode		2,15		K/W				
Temperature Sensor									
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω				
Mechanical Data									
w			30		g				
M _s	Mounting torque	2,25		2,5	Nm				


SK 20 DGDL 066 ET

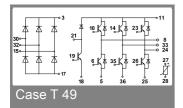


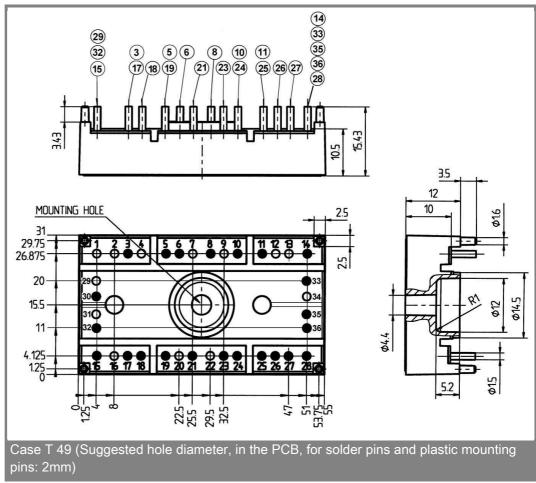






SK 20 DGDL 066 ET





20 DGDL 066 ET

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.