

SEMITOP[®] 3

IGBT Module

SK20GD066ET

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

- Inverter up to 6,3 kVA
- Typ. motor power 4 kW

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specif				
Symbol	-		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		600	V
I _C	T _j = 175 °C	T _s = 25 °C	30	A
		T _s = 70 °C	25	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		40	А
V _{GES}			± 20	V
t _{psc}	$\label{eq:V_CC} \begin{array}{l} V_{CC} \texttt{=} \texttt{360 V}; \ V_{GE} \leq \texttt{20 V}; \\ V_{CES} \texttt{<} \texttt{600 V} \end{array}$	T _j = 150 °C	6	μs
Inverse D	Diode			•
I _F	T _j = 175 °C	T _s = 25 °C	31	А
		T _s = 70 °C	24	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		40	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	95	А
Module				
I _{t(RMS)}				А
T _{vj}			-40 +175	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =		25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,29 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0011	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		27,5	37,5	mΩ
		T _j = 150°C		42,5	52,5	mΩ
V _{CE(sat)}	I _{Cnom} = 20 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		T _j = 125°C _{chiplev.}		1,65	2,05	V
C _{ies}				1,1		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,071		nF
C _{res}				0,032		nF
Q _G	V _{GE} = -7V+15V			225		nC
t _{d(on)}				16		ns
t, -	$R_{Gon} = 15 \Omega$	V _{CC} = 300V		15		ns
E _{on}	di/dt = 3300 A/µs	I _C = 20A		0,34		mJ
t _{d(off)}	R _{Goff} = 15 Ω di/dt = 3300 A/μs	$T_{j} = 150 \ ^{\circ}C$		166 40		ns
t _f E _{off}	αι/αι = 3500 Α/μ5	V _{GE} =±15V		40 0,63		ns mJ
R _{th(j-s)}	per IGBT			1,95		K/W

GD-ET

SEMITOP[®] 3

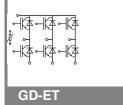
IGBT Module

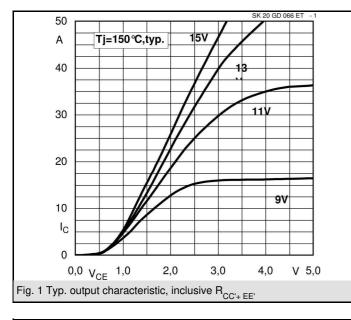
SK20GD066ET

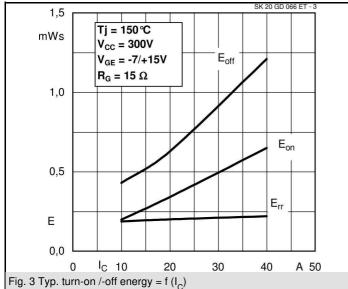
Target Data

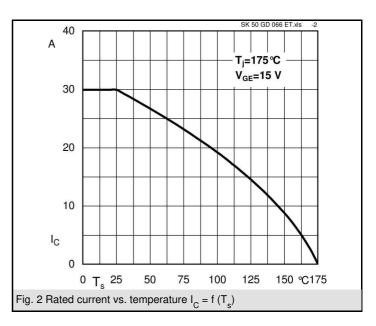
Features

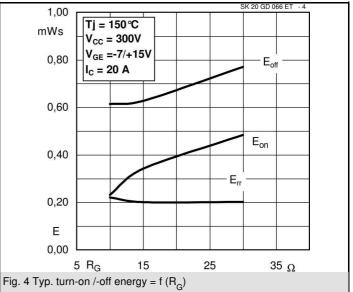
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

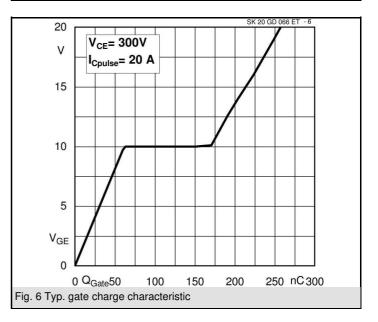

Typical Applications*

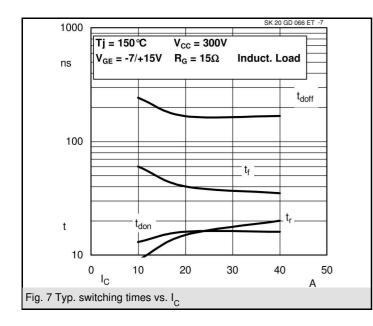

- Inverter up to 6,3 kVA
- Typ. motor power 4 kW

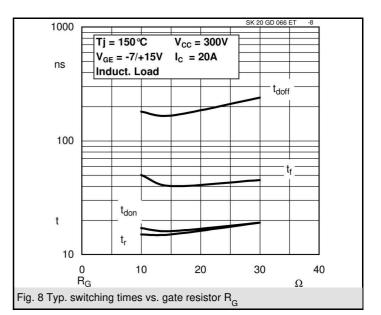

Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I _{Fnom} = 20 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,45	1,7	V
		T _j = 150 °C _{chiplev.}		1,45	1,7	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		22,5	30	mΩ
		T _j = 150 °C		27,5	35	mΩ
I _{RRM}	I _F = 30 A	T _j = 150 °C		32		А
Q _{rr}	di/dt = 3300 A/µs			2		μC
E _{rr}	V _{CC} = 300V			0,2		mJ
R _{th(j-s)D}	per diode			2,46		K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g
Tempera	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

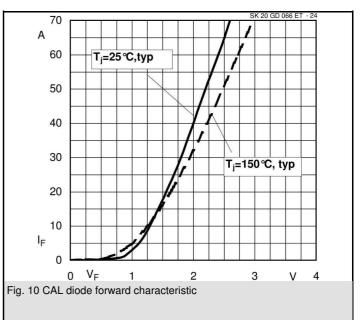

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

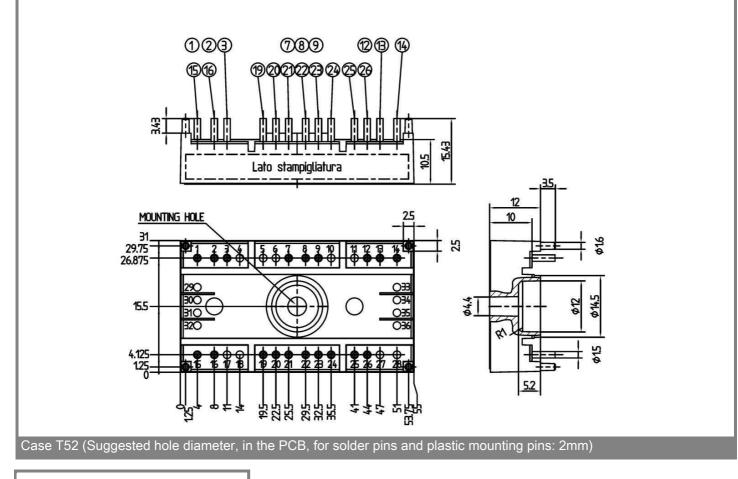

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

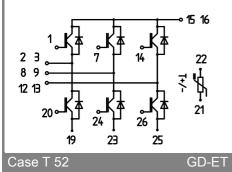












UL recognized

file no. E63 532

