

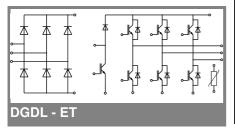
SEMITOP®3

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 30 DGDL 066 ET

Target Data

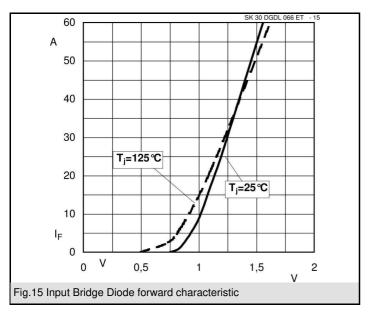
Features

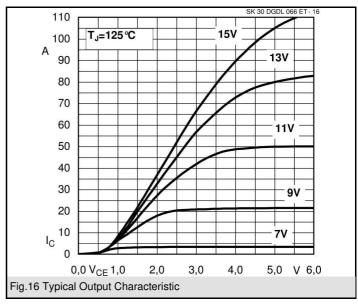
- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

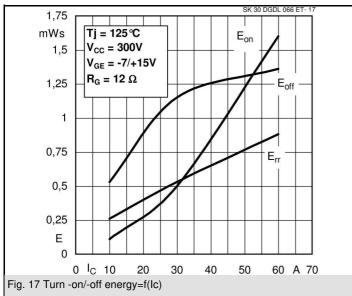
- Inverter up to 10 kVA
- Typ. motor power 4 kW

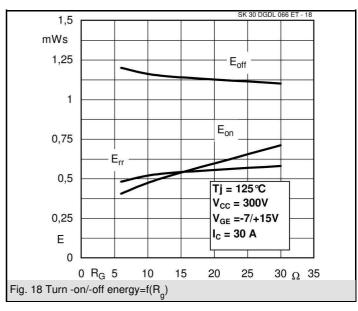
Remarks

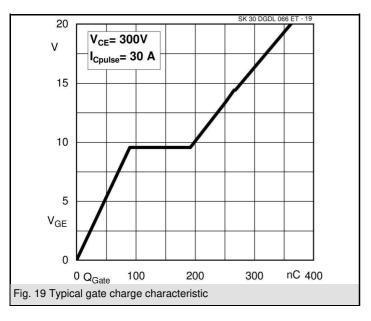

- V_{CE,sat} , V_F = chip level value
 SC data:

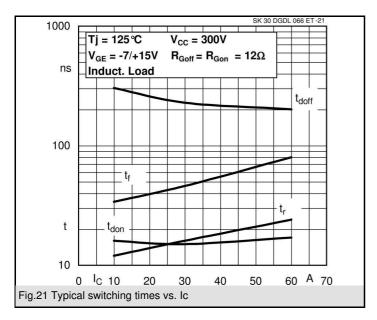

$$t_p \le 6 \text{ s;V}_{GE} \le 15\text{V;T}_j = 150^{\circ}\text{c;V}_{cc} = 360\text{V}$$

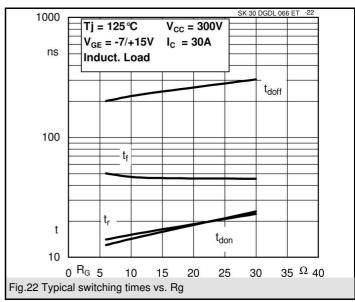
 $t_{isol} = 3000\text{V AC,50Hz,1s}$

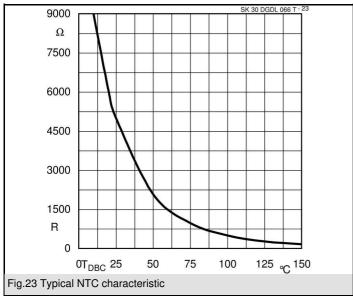


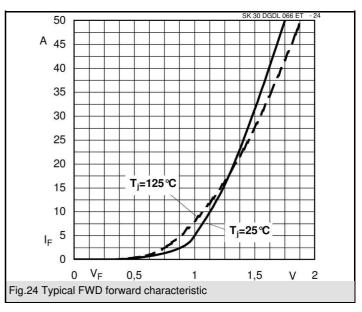

Absolute Maximum Ratings $T_s = 25^{\circ}C$, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, chopper							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	40 (31)	Α				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	35 (26)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	60	Α				
V_{GES}	·	± 20	V				
T_{j}		-40 + 175	°C				
Diode - Inverter, chopper							
I _F	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 150 ^{\circ}\text{C}$	32 (24)	Α				
I _F	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	36 (28)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	60	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	$T_s = 70 ^{\circ}\text{C}$	35	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	370	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	680	A²s				
T _i		-40 + 175	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 + 125	°C				
V_{isol}	AC, 1 min.	2500	V				

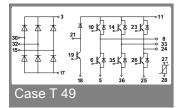

Characte	istics	T _s = 25°C , unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, chopper									
V _{CE(sat)}	I _{Cnom} = 30 A, T _i = 25 (150) °C		1,45 (1,65)	1,85 (2,05)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.43$ mA	5	5,8	6,5	V				
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)		V				
r _{CE}	$T_{j} = 25 (150) ^{\circ}C$		18 (27)	28 (38)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,63		nF –				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,11		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,05		nF				
$R_{th(j-s)}$	per IGBT		1,65		K/W				
$t_{d(on)}$	under following conditions		15		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -7/+15$		12		ns				
t _{d(off)}	$I_{Cnom} = 30 \text{ A}, T_j = 125 \text{ °C}$		228		ns				
t _f	$R_{Gon} = R_{Goff} = 12 \Omega$		46		ns				
$E_{on} (E_{off})$	inductive load		0,55 (1,15)		mJ				
Diode - Inverter, chopper									
$V_F = V_{EC}$	I _F = 30 A, T _i = 25 (150) °C		1,5 (1,5)	1,7 (1,7)	V				
V _(TO)	$T_j = 25 (150) ^{\circ}C$		1 (0,9)		V				
r _T	T _j = 150 () °C		20		mΩ				
$R_{th(j-s)}$	per diode		2,3		K/W				
I _{RRM}	under following conditions		19,1		Α				
Q_{rr}	I _{Fnom} = 30 A, V _R = 300 V		1,8		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125^{\circ}\text{C}$		0,53		mJ				
	$di_F/dt = -950 \text{ A/}\mu\text{s}$								
Diode rectifier									
V _F	I _{Fnom} = 25 A, T _i = 25 °C		1,1		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	T _j = 150 °C		15		mΩ				
$R_{th(j-s)}$	per diode		1,7		K/W				
	Temperature Sensor								
R_{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω				
Mechanical Data									
w			30		g				
M_s	Mounting torque	2,25		2,5	Nm				

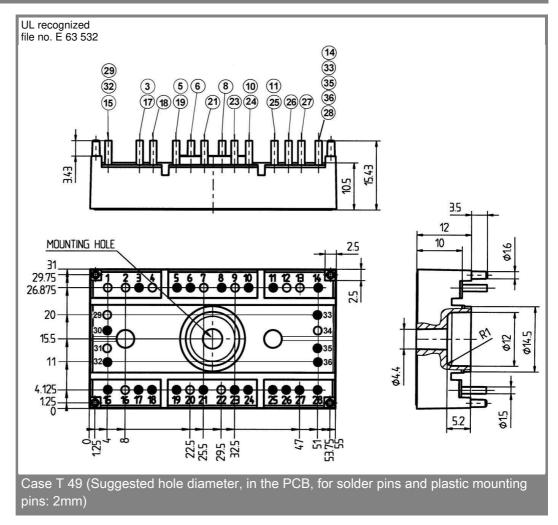












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.