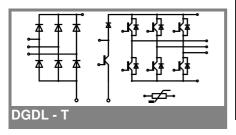


3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 50 DGDL 066 T

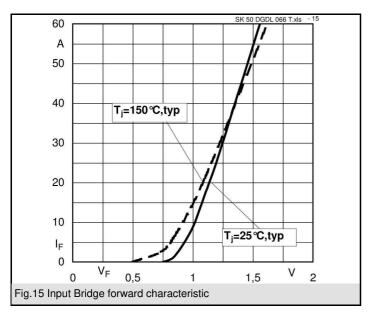
Preliminary Data

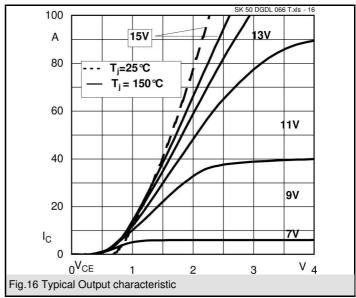
Features

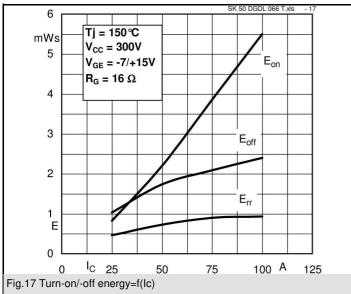

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperatur sensor

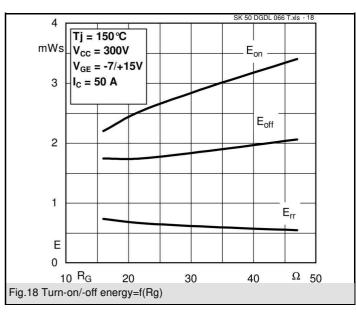
Typical Applications*

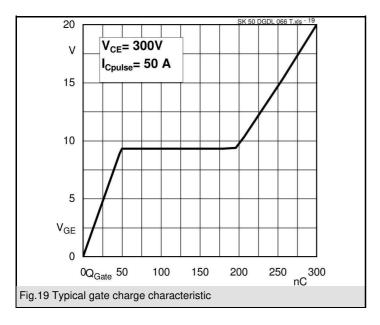
- Inverter up to 12,5 kVA
- Typical motor power 5,5 kW

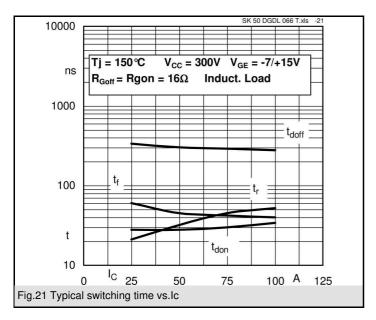

Remarks

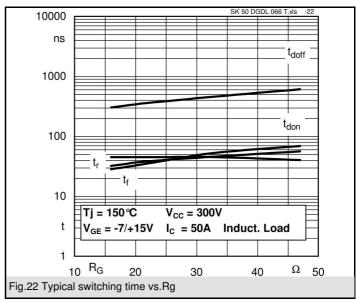

• V_{CE,sat} , V_F = chip level value

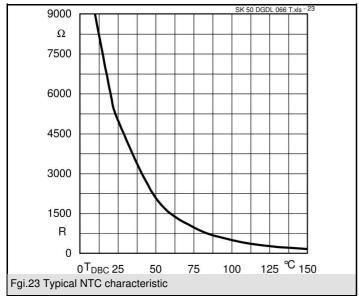


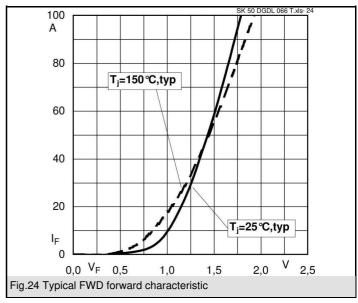

Absolute Maximum Ratings T _s = 25°C, unless otherwise sp							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	69 (55)	Α				
I _C	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 150 ^{\circ}\text{C}$	62 (47)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	100	Α				
V_{GES}		± 20	V				
T_j		-40 + 175	°C				
Diode - Inverter, Chopper							
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	48 (35)	Α				
I _F	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	54 (42)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	56	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	$T_s = 70 ^{\circ}C$	35	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	370	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	680	A²s				
T _i		-40 + 175	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

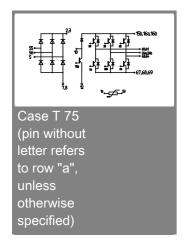

Characte	ristics	T _s = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter, Chopper								
V _{CE(sat)}	I _{Cnom} = 50 A, T _i = 25 (150) °C	1,05	1,45 (1,65)	1,85 (2,05)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.8 \text{ mA}$	5	5,8	6,5	V			
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,8)	1,1 (1)	V			
r_{CE}	$T_{j} = 25 (150) ^{\circ}C$		11 (17)	15 (21)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		3,1		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,2		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,093		nF			
$R_{th(j-s)}$	per IGBT		0,95		K/W			
$t_{d(on)}$	under following conditions		28		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -7 / + 15 \text{ V}$		32		ns			
t _{d(off)}	I _{Cnom} = 50 A, T _j = 150 °C		301		ns			
t _f	$R_{Gon} = R_{Goff} = 16 \Omega$		45		ns			
$E_{on} (E_{off})$	inductive load		2,2 (1,74)		mJ			
Diode - Inverter, Chopper								
$V_F = V_{EC}$	I _F = 37 A, T _i = 25 (150) °C		1,35 (1,31)		V			
V _(TO)	T _j = 25 (150) °C		(0,85)		V			
r _T	$T_{j} = 25 (150) ^{\circ}C$		(12,6)		mΩ			
R _{th(j-s)}	per diode		1,6		K/W			
I _{RRM}	under following conditions		44		Α			
Q_{rr}	$I_{Fnom} = 50 \text{ A}, V_{R} = 300 \text{ V}$		4,8		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$		0,73		mJ			
	$di_F/dt = 2438 \text{ A/}\mu\text{s}$							
Diode - Rectifier								
V_{F}	I _{Fnom} = 25 A, T _j = 25 °C		1,1		V			
$V_{(TO)}$	T _i = 150 °C		0,8		V			
r _T	$T_{j} = 150 ^{\circ}\text{C}$		13		mΩ			
$R_{th(j-s)}$	per diode		1,5		K/W			
Temperature Sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical Data								
w			60		g			
M_s	Mounting torque	2,5		2,75	Nm			

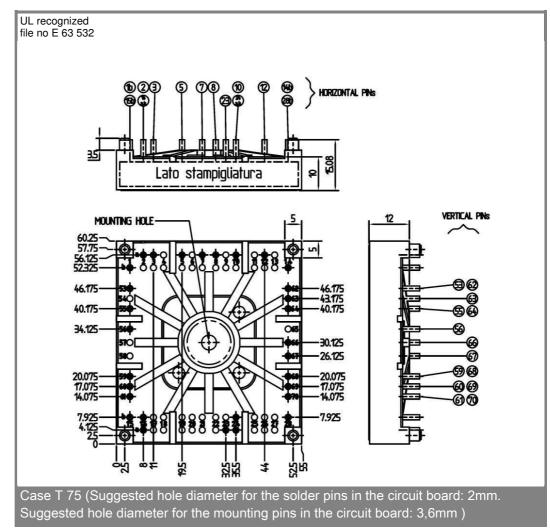












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.