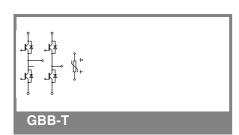


SEMITOP® 3

IGBT Module

SK50GBB066T

Target Data


Features

- Compact design
- · One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

• Visol = 3000V AC,50Hz,1s

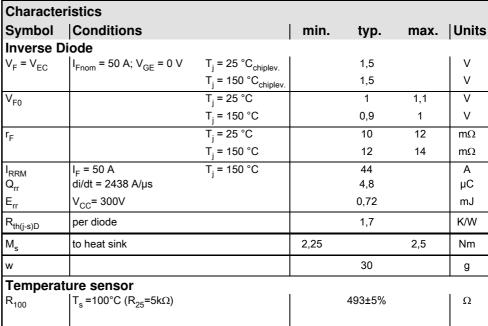
Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified							
Symbol	Conditions		Values	Units			
IGBT							
V_{CES}	T _j = 25 °C		600	V			
I _C	T _j = 175 °C	T _s = 25 °C	60	Α			
		T _s = 70 °C	50	Α			
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	Α			
V _{GES}			± 20	V			
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 150 °C	6	μs			
Inverse Diode							
I_{F}	T _j = 175 °C	$T_s = 25 ^{\circ}C$	56	Α			
		$T_s = 70 ^{\circ}C$	44	Α			
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		60	Α			
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	320	Α			
Module							
$I_{t(RMS)}$				Α			
T _{vj}			-40 + 175	°C			
T _{stg}			-40 + 125	°C			
V _{isol}	AC, 1 min.		2500	V			

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C				mA
		T _j = 150 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
		$T_j = 150 ^{\circ}\text{C}$ $T_i = 25 ^{\circ}\text{C}$				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	15	mΩ
		$T_{j} = 150^{\circ}C$		17	21	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev}$		1,65	2,05	V
C _{ies}				3,1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,2		nF
C _{res}				0,093		nF
Q_G	V _{GE} = -7V+15V			250		nC
t _{d(on)}				28		ns
t _r	R_{Gon} = 16 Ω	$V_{CC} = 300V$		32		ns
E _{on}	di/dt = 2438 A/µs	I _C = 50A		2,2		mJ
t _{d(off)}	$R_{Goff} = 16 \Omega$	T _j = 150 °C		301		ns
t _f	di/dt = 2438 A/µs	V _{GE} = -7/+15V		45		ns
E _{off}				1,73		mJ
R _{th(j-s)}	per IGBT			1,11		K/W

IGBT Module

SK50GBB066T

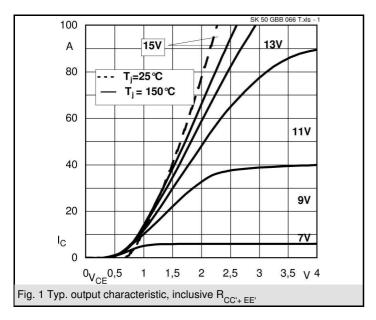
Target Data

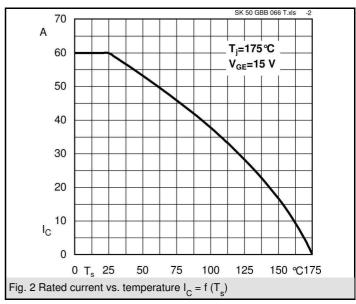

Features

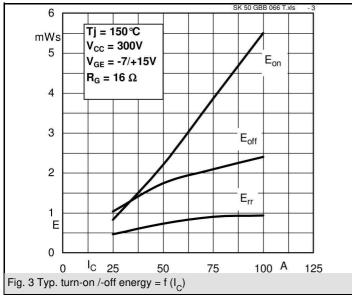
- · Compact design
- · One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

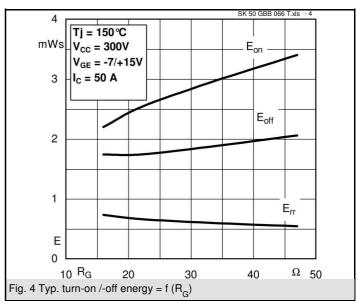
Typical Applications*

Remarks


• Visol = 3000V AC,50Hz,1s




This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

