SKiiP 03AC126V1

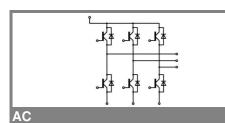
MiniSKiiP[®]0

3-phase bridge inverter

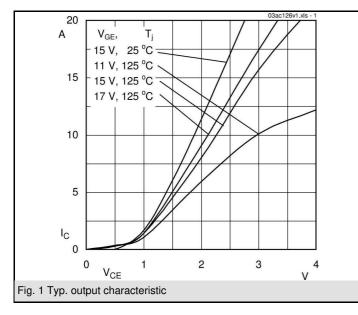
SKiiP 03 AC 126 V1

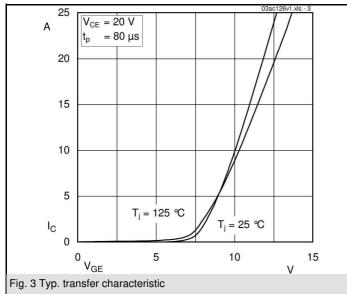
Preliminary Data

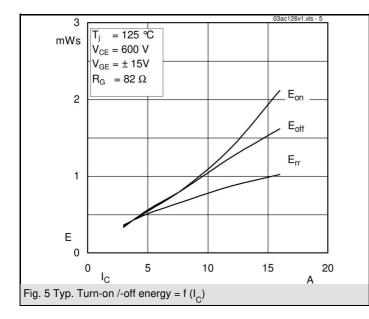
Features

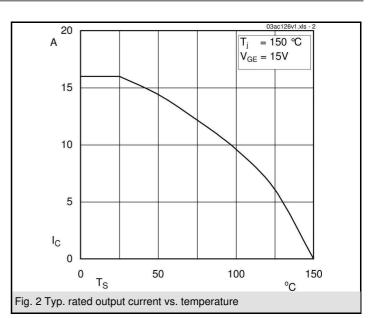

- Fast Trench IGBTs
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

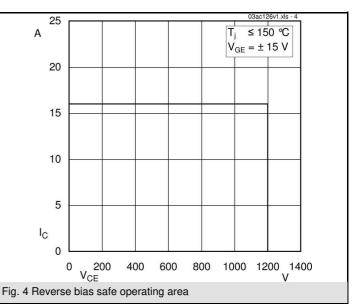
Remarks

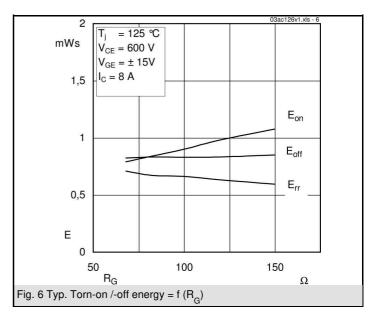

- V_{CEsat}, V_F = chip level value
 without T-Sensor

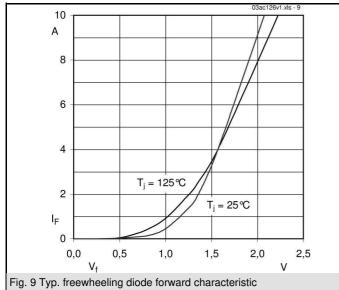

 T_{S} = 25 °C, unless otherwise specified **Absolute Maximum Ratings** Symbol |Conditions Values Units **IGBT - Inverter** 1200 V V_{CES} T_s = 25 (70) °C 16 (15) А I_{C} $t_p \le 1 \text{ ms}$ 16 А I_{CRM} V_{GES} ± 20 V Τ_j -40...+150 °C **Diode - Inverter** T_s = 25 (70) °C 14 (11) А I_{F} $t_p \le 1 \text{ ms}$ 16 А I_{FRM} °C -40...+150 T_{j} per power terminal (20 A / spring) 20 А I_{tRMS} -40...+125 °C $T_{op} \le T_{stg}$ T_{stg} V_{isol} AC, 1 min. 2500 V

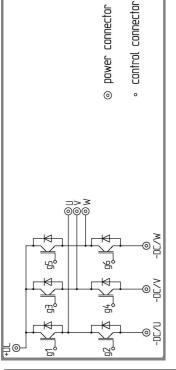

$ \begin{array}{c} C_{L(10)} & J = 25 \ (125) \ ^{\circ}C \\ C_{ies} & V_{CE} = 25 \ V, \ V_{GE} = 0 \ V, \ f = 1 \ MHz \end{array} $	max. 2,1 (2,4) 6,5 1,2 (1,1) 113 (162)	Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6,5 1,2 (1,1)	V V mΩ nF
	6,5 1,2 (1,1)	V V mΩ nF
	1,2 (1,1)	V mΩ nF
	,	mΩ nF
$ \begin{array}{ccc} r_{T} & T_{j} = 25 \ (125) \ ^{\circ}\text{C} & 87 \ (138) \\ C_{ies} & V_{CE} = 25 \ V, \ V_{GE} = 0 \ V, \ f = 1 \ \text{MHz} & 0,7 \end{array} $	113 (162)	nF
C_{oes} $V_{\text{CE}}^{\text{C}} = 25 \text{ V}, \text{ V}_{\text{GE}}^{\text{C}} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ 0,1		nF
C_{res} $V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$ 0,1		nF
R _{th(j-s)} per IGBT 1,5		K/W
t _{d(on)} under following conditions 40		ns
$t_r = V_{CC} = 600 \text{ V}, \text{ V}_{GE} = \pm 15 \text{ V}$ 25		ns
$t_{d(off)}$ $I_{Cnom} = 8 \text{ A}, T_j = 125 \text{ °C}$ 370		ns
$t_f = R_{Gon} = R_{Goff} = 82 \Omega$ 85		ns
E _{on} inductive load 0,9		mJ
E _{off} 0,9		mJ
Diode - Inverter		
$V_{\rm F} = V_{\rm EC}$ $I_{\rm Fnom} = 8 \text{ A}, T_{\rm i} = 25 (125) ^{\circ}{\rm C}$ 1,9 (2)	2,2 (2,4)	V
$V_{(TO)}$ T _j = 25 (125) °C 1 (0,8)	1,1 (0,9)	V
r_{T} $T_{i} = 25 (125) °C$ 112 (150)	138 (187)	mΩ
R _{th(j-s)} per diode 2,5		K/W
I _{RRM} under following conditions 13		Α
$Q_{rr} = 8 A, V_R = 600 V$ 1,6		μC
E_{rr} $V_{GE} = 0 V, T_{i} = 125 °C$ 0,7		mJ
$di_{F}/dt = 480 \text{ Å}/\mu \text{s}$		
Temperature Sensor		
$R_{ts} \qquad \%, T_r = () \ ^{\circ}C \qquad ()$		Ω
Mechanical Data		
m 21,5		g
M _s Mounting torque 2	2,5	Nm




SKiiP 03AC126V1







01-10-2009 LAN

SKIIP 03AC126V1

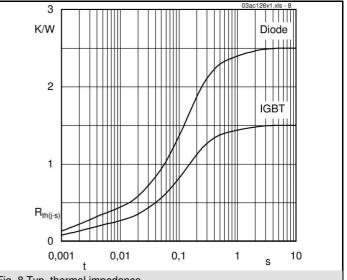
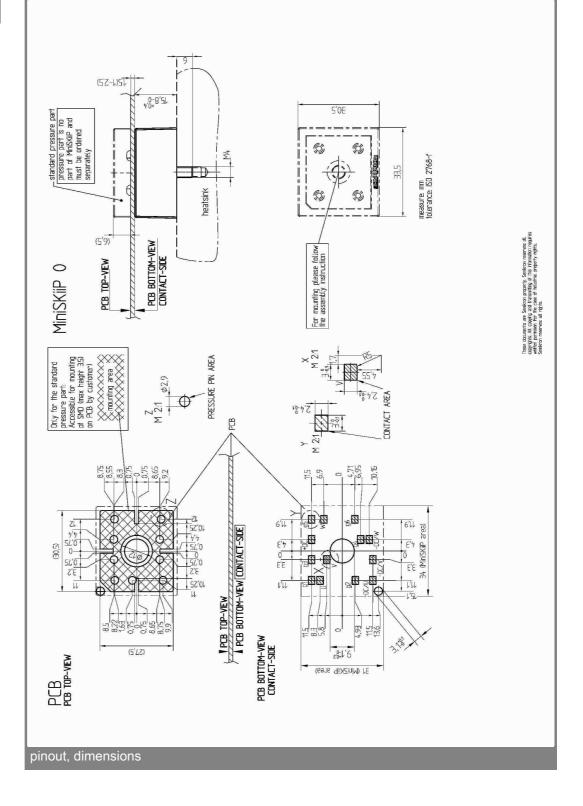



Fig. 8 Typ. thermal impedance

SKiiP 03AC126V1

circuit

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.