SKiiP 11AC126V10

MiniSKiiP[®] 1

3-phase bridge inverter

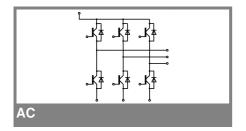
SKiiP 11AC126V10

Preliminary Data

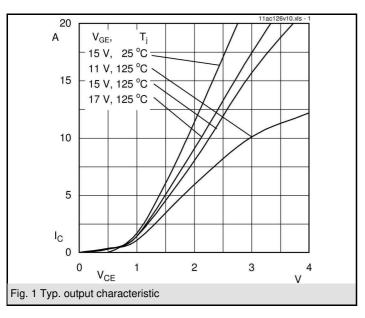
Features

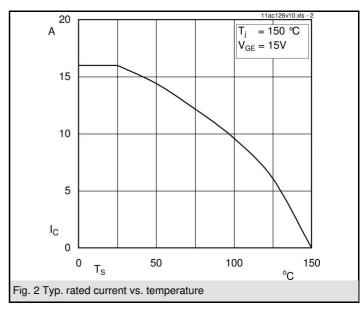
- Fast Trench IGBT
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

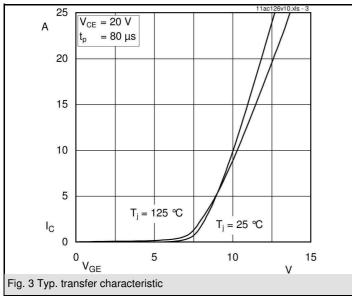
Typical Applications*

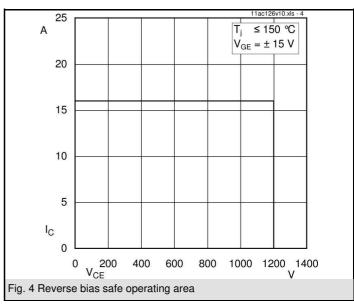

- Inverter up to 8 kVA
- Typical motor power 4 kW

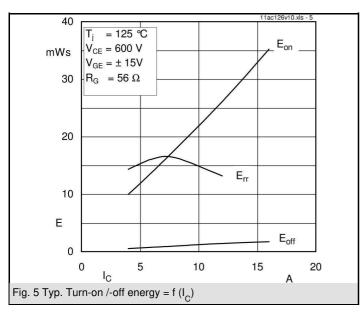
Remarks

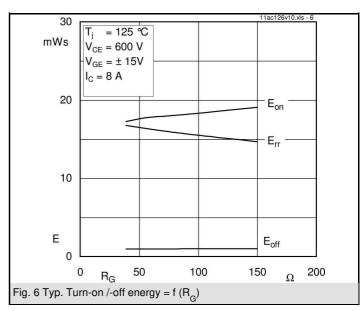

- V_{CEsat}, V_F= chip level value
 Module with rectifier diodes

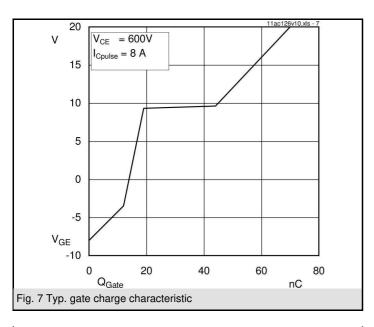

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		1200	V					
I _C	T _s = 25 (70) °C	16 (15)	Α					
I _{CRM}	$t_p \le 1 \text{ ms}$	16	Α					
V_{GES}		± 20	V					
T _j		- 40 + 150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C	48 (35)	Α					
I _{FRM}	$t_p \le 1 \text{ ms}$	220	Α					
T _j		- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	40	Α					
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

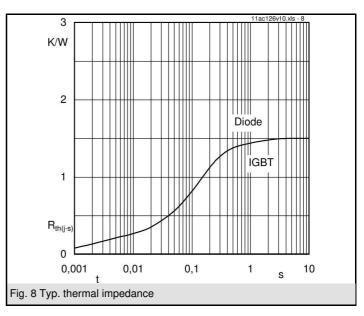

Characteristics T _s = 25 °C, unless otherwise spec								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat}	I _{Cnom} = 8 A, T _i = 25 (125) °C		1,7 (2)	2,1 (2,4)	V			
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 0.3 \text{ mA}$	5	5,8	6,5	V			
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	,	V			
r _T	T _j = 25 (125) °C		87 (138)	113 (162)	mΩ			
C _{ies}	V'_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		0,7		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,1		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,1		nF			
$R_{th(j-s)}$	per IGBT		1,5		K/W			
t _{d(on)}	under following conditions		30		ns			
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		ns					
t _{d(off)}	I _{Cnom} = 8 A, T _j = 125 °C	380			ns			
t _f	$R_{Gon} = R_{Goff} = 56 \Omega$	120			ns			
Ė _{on}	inductive load		17,8		mJ			
E _{off}			1		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _{Fnom} = 15 A, T _i = 25 (125) °C	1	1,1		V			
V _(TO)	T _i = 25 (150) °C	(0,8)			V			
r _T	T _j = 25 (150) °C	(20)			mΩ			
$R_{th(j-s)}$	per diode	1,5			K/W			
I _{RRM}	under following conditions		28		Α			
Q_{rr}	I _{Fnom} = 15 A, V _R = 600 V	59			μC			
E _{rr}	V _{GE} = 0 V, T _i = 125 °C	16,4			mJ			
	$di_F/dt = 520 A/\mu s$							
Temperature Sensor								
	%, T _r = () °C		()		Ω			
Mechanical Data								
m			35		g			
M_s	Mounting torque	2		2,5	Nm			



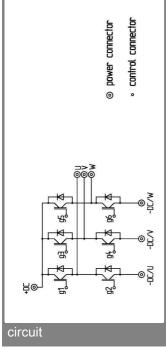

SKiiP 11AC126V10

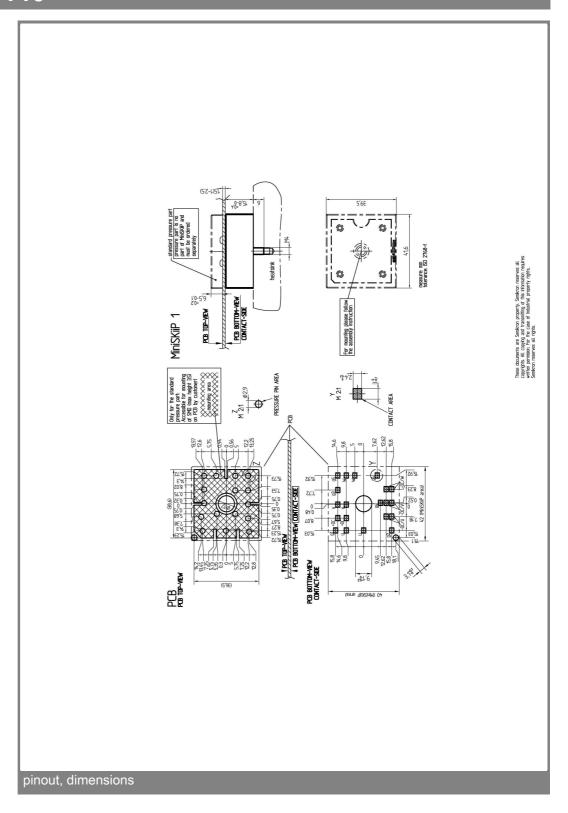











SKiiP 11AC126V10

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

4 29-05-2008 LAN © by SEMIKRON

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.